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ABSTRACT
Break-up–related extrusive magmatism, imaged in reflection 

seismic data as seaward-dipping reflectors (SDRs), extends sym-
metrically along the volcanic margins of the Atlantic Ocean. Recent 
research found distinct along-margin variations in the distribution of 
SDRs, and abundance of volcanic material was found to be spatially 
linked to transfer fault systems. These segmented the propagating rift 
that later developed into the ocean, and are interpreted as rift propa-
gation barriers. Based on these observations, we develop a numeri-
cal model, which shows that rift-parallel mantle flow and locally 
enhanced rates of volcanism are the result of delays in rift propaga-
tion and segmented opening. Our model suggests that segmentation 
is one of the major factors in the distribution and localization of rift-
related extrusive magmatism. We conclude that in addition to mantle 
temperature and inherited crustal structures (e.g., weaknesses from 
previous rift episodes), rift propagation delay plays an important role 
in the distribution of extrusive volcanism at volcanic passive margins 
by controlling the mantle flow beneath the rift axis.

INTRODUCTION
Extensive magmatism (Fig. 1) accompanied the continental break-up 

of large portions of the Atlantic margins (e.g., Mutter et al., 1982; Eldholm 
et al., 1989). Propagating rift systems formed the segmented margins (e.g., 
Planke et al., 1991; Clemson et al., 1997; Franke et al., 2007; Tsikalas et 
al., 2005) of the southern South Atlantic and the northern North Atlantic 
(Fig. 1). Segmentation is recorded in the southern South Atlantic in sea-
ward-dipping reflector (SDR) distribution and magnetic anomalies (e.g., 
Clemson et al., 1997; Franke et al., 2007; Koopmann et al., 2014a). For 
the North Atlantic between Norway and Greenland, segmentation has also 
been observed (e.g., Planke et al., 1991; Tsikalas et al., 2005; Elliott and 
Parson, 2008), although some segment boundaries (or “transfer zones”) 
are still under discussion (Olesen et al., 2007). Segmentation resulted 
from inherited crustal zones of stiffness or weakness that guided the rift at 
these boundaries (e.g., Rosendahl, 1987).

Offshore volcanics are a defining feature of volcanic margins (e.g., 
Mutter et al., 1982), and their distribution is commonly linked to onshore-
emplaced large igneous provinces (LIPs) and the arrival of a mantle 
plume (White and McKenzie, 1989). A strong correlation between SDR 
volumes and rift segmentation, together with three-dimensional (3-D) 
numerical modeling results, lead us to challenge this view. Here, we 
demonstrate that sequentially active rift segments may create shallow, 
pressure-driven, rift-parallel flow across segment boundaries, thereby 
guiding along-strike magmatism.

VOLCANISM AND BREAK-UP IN THE SOUTH AND NORTH 
ATLANTIC

Continental extension lasted from the Late Triassic (ca. 210 Ma; e.g., 
Macdonald et al., 2003) until the South Atlantic opened in the Early Cre-
taceous at ca. 134 Ma. Volcanism related to break-up of the South Atlan-

tic and emplacement of the Paraná-Etendeka LIP in Brazil and Namibia 
(Fig. 1) peaked between 134 Ma and 129 Ma (dPeate, 1997). Opening of 
the southern segment of the South Atlantic occurred from south to north 
(e.g., Austin and Uchupi, 1982) and is interpreted as a successive unzip-
ping of rift zones (e.g., Jackson et al., 2000; Franke et al., 2007). Accord-
ingly, SDRs were emplaced from south to north: magnetic anomaly M9 
is the oldest anomaly seaward of the SDRs off Cape Town, South Africa, 
while 2000 km northward, the oldest magnetic anomaly is M0 (Koop-
mann et al., 2014b), a difference of ~10 m.y. Seafloor spreading north of 
the Florianópolis fracture zone (FZ), Brazil (Fig. 1), initiated at ca. 112 
Ma (e.g., Torsvik et al., 2009; Moulin et al., 2010; Heine et al., 2013), 
resulting in an interval of ~20 m.y. between break-up ages of southern 
(134 Ma) and northern (112 Ma) segments (Franke, 2013). The Paraná-
Etendeka LIP is spatially linked to this FZ (Fig. 1).

Continental break-up in the North Atlantic ended an ~350-m.y.-long 
predominately extensional period (e.g., Ziegler, 1988). During break-up, 
two sublinear rift segments in the south and north of the opening oceanic 
basin were connected by a sinuous segment in the middle (Larsen et al., 
1994). The North Atlantic LIP in East Greenland (Fig. 1) erupted at 56–55 
Ma (e.g., Eldholm et al., 1989; Storey et al., 2007). The third of three 
episodes emplacing plateau basalts in the center of the North Atlantic LIP 
in East Greenland (Larsen and Watt, 1985) at ca. 55 Ma correlates with 
oceanic crust formation. This indicates rift delay during the two previ-
ous episodes. Geometrical difficulties in reconstruction of the southwest 
Vøring (offshore Norway) and northeast Greenland margins indicate 
discontinuous, complex rifting (Olesen et al., 2007). Oceanic spreading 
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Figure 1. ETOPO1 (www .ngdc .noaa .gov /mgg /global /global .html) 
map of the South and North Atlantic (Atl.), with offshore and 
onshore large igneous provinces (LIPs), magnetic anomalies, 
and other structural elements. Margin segments are defined by 
structural variations across segment boundaries. Structures 
are from Bryan et al. (2010), Courtillot et al. (2003), Franke et 
al. (2007), and Koopmann et al. (2014a). SDR—seaward dipping 
reflector; FZ—fracture zone; MOR—mid-oceanic ridge; Mag.
Ano.—magnetic anomaly; Segm.Bd.—segment boundary.
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anomalies C24A, C23, and C22 terminate against the northeast Greenland 
continental slope between the Greenland FZ and Jan Mayen FZ (Hinz 
et al., 1991). Spreading propagated southward toward the proposed Ice-
land hot-spot location, from the Greenland FZ at 54.2 Ma to the proto–Jan 
Mayen FZ at 50 Ma (Lundin, 2002). Overlapping spreading centers on the 
Greenland–Iceland Rise persisted to 20 Ma, with northward propagation 
along proto-Reykjanes and proto-Kolbeinsey ridges (Lundin, 2002). The 
Jan Mayen FZ was an oceanic transform connecting the two ridges until 
abortion of the Aegir Ridge between ca. 33 Ma and ca. 22 Ma (C13n–
C6B; Gaina et al., 2007; Gernigon et al., 2012).

In conclusion, initiation of rifting occurred in the South and North 
Atlantic distal from the proposed hot-spot locations (Tristan and Iceland, 
respectively) with a rift migration toward the hot-spot position, and there 
is consistent delay in break-up at the proposed location of hot-spots and 
the location of abundant volcanism.

NUMERICAL MODEL SETUP
We use the numerical code SLIM3D (Popov and Sobolev, 2008) 

to explore the consequences of imposed rift delay at transfer zones on 

melt generation. This elasto-visco-plastic, finite-element code has been 
successfully applied in a number of 3-D rift experiments (e.g., Brune et 
al., 2013; Brune, 2014). Our model is 1500 km long, 250 km wide, and 
150 km deep, comprising laterally homogeneous crust and mantle layers 
(Fig. 2A). Full extension velocity is 20 mm/yr in the x direction, com-
parable to the extension rate of the southern South Atlantic rift system 
(Heine et al., 2013). To test the effect of rift segmentation and delay, we 
impose sequential extension of three rift segments: rifting starts in the first 
500-km-long segment by imposing half of the extension velocity at each 
model side while the remaining 1000 km of the model is not activated. 
After 5 m.y., the second segment is activated with the same extension 
velocity, and only the third segment remains inactive. From 10 m.y. on, all 
segments extend with a velocity of 20 mm/yr. Transfer faults between the 
segments are prescribed at model start by reducing the friction coefficient 
to 0.05. The top boundary has a free surface, the boundaries facing the y 
direction feature a free-slip condition, while the bottom boundary allows 
inflow and outflow of material through a dynamically tracked Winkler 
boundary condition (Popov and Sobolev, 2008). A more detailed model 
description is given in the GSA Data Repository1. Decompression melting 
of mantle material is incorporated in a post-processing step. A peridotite 
batch melting model using the formulation of Katz et al. (2003) and the 
consumption of lattice energy (Brune et al., 2014) are considered. For sim-
plicity, we neglect the effects of melt-induced viscosity reduction (Bürg-
mann and Dresen, 2008) and strengthening of residual mantle material 
(Hirth and Kohlstedt, 1996). We assume that melt is extracted vertically 
and all magma is emplaced at the surface. Previous numerical models pro-
vided insight on melt dynamics in 2-D rift settings (e.g., Armitage et al., 
2010; Schmeling, 2010), whereas the presented model is among the first 
to describe 3-D rift dynamics with melt generation.

NUMERICAL MODEL RESULTS
In agreement with observations from the North and South Atlan-

tic, and as imposed by the model’s boundary conditions, break-up in the 
model occurs via rift propagation (Figs. 2B and 2C). In the same manner, 
the area affected by decompression melting (between 65 km and 15 km 
depth beneath the rift center; Fig. 3A) propagates along strike.

Figure 3 depicts a key aspect of the model by illustrating how rift 
delay controls the flow beneath the rift axis. During the first 5 m.y., exten-
sion of segment 1 is accompanied by dominantly vertical flow, until it 
comprises a reservoir of hot, low-viscosity mantle material. Following 
activation of the next segment at 5 m.y., parts of this low-viscosity mantle 
are pulled across the first segment boundary into segment 2. This repeats 
at 10 m.y., when opening of segment 3 increases rift-parallel flow across 
the second segment boundary.

This rift-parallel flow is caused by a lateral pressure gradient between 
sequentially opening segments. The along-strike flow of hot material near 
the segment boundary leads to elevated temperature and thus decompres-
sion melting if compared to the segment interior. This takes place without 
enhancing crustal thinning near the transfer zones and generates peaks in 
overall pre–break-up melt volumes (Fig. 4).

Rift-parallel flow and concomitant magmatic peaks near rift propa-
gation barriers are robust features taking place in alternative model scenar-
ios with different delay times (Fig. 4C) and also with different resolutions 
and model depths (see the Data Repository). If no delay is imposed in our 
model, the rift system behaves in a 2-D manner, and localized melt gen-
eration does not occur. An increase of the rift delay time results in a larger, 
hotter, and less viscous reservoir of mantle material within the opening 
segment upon activation of the next segment. This generates faster shal-
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1GSA Data Repository item 2014368, distribution of seaward-dipping re-
flectors, numerical model description, alternative setups and model robustness, 
and five animations of the model run, is available online at www.geosociety.org 
/pubs/ft2014.htm, or on request from editing@geosociety.org or Documents Sec-
retary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Figure 2. A: Model with sequentially activated segments (left), 
and initial yield strengths for numerical model (right); weak zone 
in model center (see 1350 °C isotherm at left). Segm.—segment; 
Isost.—isostatic. B: Logarithmic strain rate plot shows strain rate 
and velocities at 10 m.y. Black lines are material boundaries. Sur-
facing of lowermost layer indicates break-up. Diff.—differential. 
C: Lithosphere-asthenosphere boundary (1300 °C isotherm) and 
generation of melt at 10 m.y. See the Data Repository (see footnote 1) 
for entire model animation (Item DR1).



GEOLOGY | December 2014 | www.gsapubs.org 3

low mantle flow across the segment boundary, and enhanced melt genera-
tion near the transfer zone (Fig. 4C).

DISCUSSION
Assembled observations and modeling results indicate a close rela-

tionship between transfer zones and excess volcanism during break-up. 
This relates to previous analog modeling by Corti et al. (2002) who sug-
gested that magma distribution at depth controls strain localization dur-
ing transfer zone formation and that, vice versa, magma migrates toward 
imposed transfer zones (Corti et al., 2004). While these studies focused 
on magma migration, our study, in contrast, provides an explanation for 
enhanced magma generation near transfer zones. Note that both the pre-
vious analog experiments and our numerical models consistently feature 
rift-parallel flow of either melt or mantle, respectively.

The exclusive role of elevated temperatures has been questioned 
previously by Armitage et al. (2009) who found strong evidence that 
inherited structures from previous extensional periods were needed to 
explain volcanic rifting in the North Atlantic and that the mantle thermal 
structure alone was unable to do so. Here we provide additional evi-
dence that geological structures and dynamic rift evolution can control 
locally enhanced magmatism.

Moreover, rift-parallel flow of mantle material has the potential 
to elucidate the increase in along-strike magmatic volumes and the 
localization of melt at segment boundaries (Franke, 2013), creating a 
distinctive triangle-shape for mapped SDRs (see Fig. DR1 in the Data 
Repository). Most material migration occurs during or right after incipi-
ent break-up at the proto–transform fault (the larger part of the triangle), 
whereas rift-parallel material flow may be responsible for the thinning 
of the triangle.

If rift segmentation affects offshore volcanism, to what extent could 
this process have contributed to the emplacement of huge onshore volca-
nic provinces? Interestingly, the Atlantic Ocean LIPs are spatially linked 
to the transform fault systems with the largest delay in rift propagation. 
During unidirectional rift propagation in the South Atlantic (Fig. 1), the 
most prominent propagation barrier was the proto–Florianópolis FZ, with 
remarkable offset (150 km; Elliott et al., 2009) and delay in break-up of 
5–20 m.y. with respect to the oceanic crust further south. At the complex 
Jan Mayen FZ system (Fig. 1), an even longer period of rift delay between 
C25 and C5 can be derived from magnetic anomalies (e.g., Gernigon et 
al., 2012) and an offset of up to 320 km. This allows the speculation that 
rift delay and the along-strike flow at segment boundaries drive portions of 
offshore and onshore volcanic provinces to their location.

CONCLUSIONS
Volumes of offshore magmatic material vary along the volcanic mar-

gins of the North and South Atlantic. These margins are segmented, with 
transfer zones between rift segments indicating rift propagation delay. 
Numerical modeling suggests a causal link between segment boundaries 
and magmatic volume variations. Our results explain observations made 
in natural systems by significant rift-parallel mantle flow across segment 
boundaries and subsequent melt generation at the tip of each opening rift 
segment. For specific rift configurations, delay at inherited structures can 
play an important part in enhancing and localizing volcanic activity.
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