Tectonics: Modeling Lithospheric Thickness Along the Conjugate South Atlantic Passive Margins Implies Asymmetric Rift Initiation

The lithospheric architecture of passive margins is crucial for understanding the tectonic processes that caused the breakup of Gondwana. We highlight the evolution of the South Atlantic passive margins by a simple thermal lithosphere-asthenosphere boundary (LAB) model based on onset and cessation of rifting, crustal thickness, and stretching factors. We simulate lithospheric thinning and select … Read more…

Marine and Petroleum Geology: Single-phase vs two-phase rifting: Numerical perspectives on the accommodation of extension during continental break-up

How continental lithosphere responds to extension is a function of the dynamic interaction between layers of differing rheological properties, including the shallow crust, deep crust, lithospheric mantle, and asthenosphere. We investigate the first-order controls on the modes of extension and timing of transition from continental rifting to development of continental margins via a suite of … Read more…

Rift and plate boundary evolution across two supercontinent cycles

Citation: Merdith, Andrew & Williams, Simon & Brune, Sascha & Collins Alan, S & Müller, Dietmar. (2018). Rift and plate boundary evolution across two supercontinent cycles. Global and Planetary Change. 173. 10.1016/j.gloplacha.2018.11.006. Abstract The extent of continental rifts and subduction zones through deep geological time provides insights into the mechanisms behind supercontinent cycles and the long term evolution of the mantle. … Read more…

Rift and plate boundary evolution across two super-continent cycles

Abstract The extent of continental rifts and subduction zones through deep geological time provides insights into the mechanisms behind supercontinent cycles and the long term evolution of the mantle. However, previous compilations have stopped short of mapping the locations of rifts and subduction zones continuously since the Neoproterozoic and within a self-consistent plate kinematic framework. … Read more…

Oblique rifting: the rule, not the exception

Abstract: Movements of tectonic plates often induce oblique deformation at divergent plate boundaries. This is in striking contrast with traditional conceptual models of rifting and rifted margin formation, which often assume 2-D deformation where the rift velocity is oriented perpendicular to the plate boundary. Here we quantify the validity of this assumption by analysing the kinematics … Read more…

New interactive rift obliquity globe on the GPlates Portal

The ARC Basin Genesis Hub has made a new interactive rift obliquity globe available on the GPlates Portal at http://portal.gplates.org/cesium/?view=rift_ov, based on a recently published paper entitled “Oblique rifting: the rule, not the exception” in Solid Earth. This virtual globe visualizes extension velocities and obliquities within Earth’s major post-Pangea rift systems. Each circle depicts the … Read more…

The role of asthenospheric flow during rift propagation and breakup

Abstract Continental rifting precedes the breakup of continents, leading to the formation of passive margins and oceanic lithosphere. Although rifting dynamics is classically described in terms of either active rifting caused by active mantle upwelling, or passive rifting caused by far-field extensional stresses, it was proposed that a transition from passive to active rifting can … Read more…

Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model

Abstract Contourite drifts are anomalously high sediment accumulations that form due to reworking by bottom currents. Due to the lack of a comprehensive contourite database, the link between vigorous bottom water activity and drift occurrence has yet to be demonstrated on a global scale. Using an eddy-resolving ocean model and a new georeferenced database of 267 contourites, we show that the … Read more…

Degassing from Continental Rifts Controls Earth’s Thermostat

As a greenhouse gas, carbon dioxide in the atmosphere has played a major role in regulating Earth’s climate throughout its history. There are vast stores of carbon in the subsurface, but the global carbon cycle controls how much of that carbon enters the atmosphere. As methods for monitoring and tracking the carbon dioxide that moves … Read more…

Abrupt plate accelerations shape rifted continental margins

Author List: Sascha Brune, Simon Williams, Nathaniel Butterworth and Dietmar Müller. Citation: Brune, S., Williams, S.E, Butterworth, N. P., and Müller, R.D. (2016). Abrupt plate accelerations shape rifted continental margins. Nature, 1–4. doi:10.1038/nature18319 Abstract: Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension … Read more…

Linking rift propagation barriers to excess magmatism at volcanic rifted margins

Citation Koopman, H., Brune, S., Franke, D. and Breuer. 2014. Linking rift propagation barriers to excess magmatism at volcanic rifted margins. Geology (Pre-Issue Publication 15. Oct), doi: 10.1130/G36085. Summary Break-up–related extrusive magmatism, imaged in reflection seismic data as seaward-dipping reflectors (SDRs), extends sym- metrically along the volcanic margins of the Atlantic Ocean. Recent research found … Read more…

Evolution of stress and fault patterns in oblique rift systems: 3D numerical lithospheric-scale experiments from rift to breakup

Rifting involves complex normal fault systems that are controlled by extension direction, reactivation of pre-rift structures, sedimentation, and dyke dynamics. The relative impact of these factors on the observed fault pattern, however, is difficult to deduce from field-based studies alone. This study provides insight in crustal stress patterns and fault orientations by employing a laterally … Read more…

Geochemistry, Geophysics, Geosystems – Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup

Brune, S. (2014). Evolution of stress and fault patterns in oblique rift systems: 3‐D numerical lithospheric‐scale experiments from rift to breakup. Geochemistry, Geophysics, Geosystems, 15(8), 3392-3415. doi: 10.1002/2014GC005446. Evolution of stress and fault patterns in oblique rift systems: 3‐D numerical lithospheric‐scale experiments from rift to breakup Download supplementary information (including animations) – pdf

Continental rifting in 3D using Underworld

This model shows the evolution of a continental rift from inception to breakup, using the Underworld numerical modelling framework. The left and right walls of the model are pulled apart from each other at a total rate of 2 cm/yr to induce rifting.Courtesy of Luke Mondy, EarthByte.View other EarthByte animations on our YouTube channel

Nature Communications – Rift migration explains continental margin assymetry and crustal hyper-extension

Brune, S., Heine, C., Pérez-Gussinyé, M., & Sobolev, S. V. (2014). Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature communications, 5. doi: 10.1038/ncomms5014. Rift migration explains continental margin asymmetry and crustal hyper-extension Download supplementary information – pdf

Rift migration explains continental margin asymmetry and crustal hyper-extension

When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using … Read more…

EarthByte publicity for Oblique rifting of the Equatorial Atlantic paper

Congratulations to EarthByte’s Sascha Brune and Christian Heine (now at Shell in The Hague) who made it to the Sydney Uni front page with a media piece on “How the world missed out on a Saharan Atlantic ocean”, attracted international media attention and were chosen as a “Research Focus” in the current volume of Geology … Read more…

Geology – Oblique rifting of the Equatorial Atlantic: Why there is no Saharan Atlantic Ocean

Heine, C., & Brune, S. (2014). Oblique rifting of the Equatorial Atlantic: why there is no Saharan Atlantic Ocean. Geology, 42(3), 211-214. doi:10.1130/G35082.1 107-199. Oblique rifting of the Equatorial Atlantic: why there is no Saharan Atlantic Ocean Access supporting data (ref. 2014073)

Proceedings of the West Australian Basins Symposium IV – Newly-recognised Continental Fragments Rifted from the West Australian Margin

Williams, S. E., Whittaker, J. M., & Müller, R. D. (2013). Newly-recognised continental fragments rifted from the West Australian margin. In The Sedimentary Basins of Western Australia IV. Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, WA (p. 10). Newly-recognised continental fragments rifted from the West Australian margin

Tectonophysics – The rift to break-up evolution of the Gulf of Aden: Insights from 3D numerical lithospheric-scale modelling

Brune, S., & Autin, J. (2013). The rift to break-up evolution of the Gulf of Aden: Insights from 3D numerical lithospheric-scale modelling. Tectonophysics, 607, 65-79. doi:10.1016/j.tecto.2013.06.029. The rift to break-up evolution of the Gulf of Aden: Insights from 3D numerical lithospheric-scale modelling

Earth and Planetary Science Letters – Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander

Chandler, M. T., Wessel, P., Taylor, B., Seton, M., Kim, S. S., & Hyeong, K. (2012). Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander. Earth and Planetary Science Letters, 331, 140-151. doi:10.1016/j.epsl.2012.03.017. Download the paper – pdf

GPlates 2.5 software and data sets

GPlates Title Logo

GPlates is a free desktop software for the interactive visualisation of plate-tectonics. The compilation and documentation of GPlates 2.5 data was primarily funded by AuScope National Collaborative Research Infrastructure (NCRIS). GPlates is developed by the EarthByte Group (part of AuScope NCRIS) at the University of Sydney and the Division of Geological and Planetary Sciences (GPS) … Read more…

Mars attracts: how Earth’s planetary interactions drive deep-sea circulation

12 March 2024, The University of Sydney Media Release Giant whirlpools in warming oceans could mitigate Gulf Stream stagnation Geoscientists at Sydney and Sorbonne have identified a 2.4-million-year cycle in the geological record that show the energy of deep-sea currents wax and wane as oceans cool and warm. Earth’s distance to Mars varies between 55 … Read more…