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Abstract11

We present results from the Community Climate System Model 3 (CCSM3) forced 12

with early to middle Miocene (~20 – 14 Ma) vegetation, topography, bathymetry and modern 13

CO2. A decrease in the meridional temperature gradient of 6.5°C and an increase in global 14

mean temperature of 1.5°C are modelled in comparison with a control simulation forced with15

modern boundary conditions. Seasonal poleward displacements of the subtropical jet streams 16

and storm tracks compared to the control simulation are associated with changes in Hadley 17

circulation and significant cooling of the polar stratosphere, consistent with previously 18

predicted effects of global warming. Energy budget calculations indicate that reduced albedo19

and topography were responsible for Miocene warmth in the high latitude northern 20

hemisphere while a combination of increased ocean heat transport and reduced albedo was21

responsible for relative warmth in the high latitude southern hemisphere, compared to the 22

present. Our model-data analysis suggests Miocene climate was significantly warmer and 23

wetter than shown in our simulation, consistent with previous uncoupled Miocene models 24

and supports recent reconstructions of Miocene CO2 substantially higher than present.25

26
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1. Introduction28

Relative warmth during the early to middle Miocene is well documented in marine 29

and terrestrial records. Benthic oxygen isotope data depict a peak in deep water temperatures30

at 17 – 14.5 Ma (Zachos et al. 2008) termed the Miocene climatic optimum, after which a 31

significant positive isotopic shift is associated with growth of the Antarctic ice-sheet and a 32

drop in deep water and high latitude sea-surface temperatures (SSTs). During the Miocene 33

climatic optimum deep waters were approximately 5 - 6°C warmer than present (Lear et al. 34

2000; Zachos et al. 2008), tropical vegetation extended poleward (Cosgrove et al. 2002; 35

Wolfe 1985) and the East-Antarctic ice-sheet was smaller than present (Pekar and DeConto 36

2006).37

Although records of Miocene warming are clear, the mechanisms responsible are not. 38

The role of CO2 is controversial, with Alkenone- and Boron-based proxies suggesting 39

concentrations similar to or lower than present (Pagani et al. 1999; Pearson and Palmer 2000)40

and leaf stomata indicators suggesting concentrations significantly higher (Kürschner et al. 41

2008). Changes in ocean gateways and bathymetry have also long been proposed as catalysts 42

for warming via modifications to ocean heat transport (Flower and Kennett 1994; Lagabrielle 43

et al. 2009; Poore et al. 2006; Ramsay et al. 1998; Schnitker 1980; Woodruff and Savin 44

1989). However, analysis of some of the concomitant tectonic events (Wright and Miller 45

1996), the proposed mechanisms involved in gateway-induced warming (Sloan et al. 1995)46

and more recently coupled atmosphere-ocean modelling (Huber and Sloan 2001) show that 47

such changes are not an easy explanation for global warmth. Nonetheless, numerous 48

independent tectonic events occurred during the Miocene and the lack of a ‘smoking gun’ for 49

the observed climate change implies a causal and cumulative relationship (Potter and 50

Szatmari 2009), though no hypothesis satisfactorily explains a connection. Furthermore, 51

sparse spatial and temporal coverage of climate proxies has limited the characterisation of 52
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global Miocene climate (Fig. 1a), although a renewed interest in Neogene environments has 53

greatly improved coverage in some regions (NECLIME, http://www.neclime.de/). 54

Various numerical models have been used to explore Miocene climate, including 55

sensitivity to CO2 (Micheels et al. 2009a; Steppuhn et al. 2007; Tong et al. 2009; You et al. 56

2009), SSTs (Herold et al. 2010; Lunt et al. 2008c; Steppuhn et al. 2006), vegetation (Dutton 57

and Barron 1997; Micheels et al. 2009b; Micheels et al. 2007), bathymetry (Barron and 58

Peterson 1991; Bice et al. 2000; Butzin et al. 2011; von der Heydt and Dijkstra 2006) or some 59

combination of these (Fluteau et al. 1999; Henrot et al. 2010; Herold et al. 2011; Kutzbach 60

and Behling 2004; Langebroek et al. 2009; Micheels et al. In Press; Ruddiman et al. 1997). 61

However, due to the relatively recent advent of coupled atmosphere-ocean models for deep 62

time paleoclimate analysis the majority of above studies have relied on prescribing SSTs or 63

ocean heat fluxes. Consequently such studies are significantly limited by uncertainties in the 64

paleoclimate record or by the simplifying assumptions of ocean heat transport. In a recent 65

study utilising a coupled atmosphere-ocean model, von der Heydt and Dijkstra (2006) use 66

version 1.4 of the Community Climate System Model (CCSM) to analyse the reversal of 67

Panama throughflow between the Oligocene and early Miocene. They link this reversal to 68

changing dimensions of Southern Ocean gateways and closing of the Tethys gateway. Using 69

the Community Earth System Models (COSMOS), Micheels et al. (In Press) take advantage 70

of the data-independence of the coupled modelling framework to analyse heat transport 71

during the late Miocene. They find a decrease in northern hemisphere ocean heat transport72

compared to the present, likely due to the open Panama gateway in the late Miocene, and a 73

compensating increase in atmospheric heat transport. In this study we present results from 74

version 3 of the CCSM forced with global Miocene boundary conditions to investigate their75

effect on atmosphere and land climate. An important advance in our study is the 76

representation of Miocene vegetation, topography and bathymetry (c.f. von der Heydt and 77
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Dijkstra 2006). In a companion study we focus on the ocean circulation results (Herold, N., 78

M. Huber, R.D. Müller and M. Seton, in revision, Paleoceanography). While the nonlinearity79

of Miocene warming (e.g. Miller et al. 1991) suggests complex feedbacks between multiple 80

processes were involved (Holbourn et al. 2005; Shevenell et al. 2008) and uncertainty 81

remains with respect to the causes of Miocene warmth, this study focuses on the mean 82

background climate of the early to middle Miocene. 83

84

2. Model description85

The CCSM3 consists of four component models of the atmosphere, ocean, land and 86

sea-ice (Collins et al. 2006). Each model operates at an independent time step and 87

communicates via a coupler. The atmosphere is represented with a hybrid sigma-pressure 88

coordinate system resolving 26 vertical levels. The land model resolves 10 soil layers, up to 89

five snow layers and 16 plant functional types. Each land grid cell consists of up to four plant 90

functional types. Both the land and atmosphere models share a horizontal T31 spectral grid, 91

representing a resolution of 3.75° x ~3.75° in longitude and latitude, respectively. The ocean 92

and sea-ice models operate on a horizontal stretched grid of approximately 3° x ~1.5° in 93

longitude and latitude, respectively, with coarser resolution at middle latitudes and finer 94

resolution at the poles and equator. 95

The CCSM3 has been utilised extensively for present and future climate simulations 96

(Meehl et al. 2007) as well as for simulations of the late Permian (Kiehl and Shields 2005)97

and Eocene epochs (Shellito et al. 2009). The low resolution CCSM3, which corresponds 98

closely to the resolution chosen in this study, allows for quick equilibration of multi-century 99

simulations while maintaining a robust steady state climate (Yeager et al. 2006). However, 100

Yeager et al. (2006) note excessive sea-ice production in both hemispheres under modern 101

boundary conditions in this configuration of the CCSM3. Ocean heat transport is also 102
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underestimated and southern hemisphere storm tracks displaced equatorward compared to 103

observations. Conversely, volume transport by the Antarctic Circumpolar Current is closer to 104

observed values and eastern boundary current SST biases are least severe in the low 105

resolution CCSM3, compared with higher resolution configurations (Yeager et al. 2006).106

107

3. Experiment design108

Our Miocene case is configured with topography and bathymetry from Herold et al. 109

(2008), with minor adjustments to sea level and the Tethys gateway (c.f. Fig. 1a). Dating of 110

Tethys gateway closure(s) is controversial with most evidence suggesting terminal closure by 111

the middle Miocene (Ramsay et al. 1998; Rögl 1999). As some researchers have attributed 112

early to middle Miocene warmth to Tethyan outflow of relatively warm, saline deep water 113

(Flower and Kennett 1995; Ramsay et al. 1998; Woodruff and Savin 1989) we choose an 114

open configuration to enable such outflow to occur. Major topographic differences between 115

the Miocene and modern day are accounted for by paleo-elevation estimates and include 116

areas such as the Tibetan Plateau and Andean Cordillera (see Herold et al. (2008) for details). 117

Plant functional types are prescribed based on Herold et al. (2010).118

Concentrations of CO2 during the Miocene are controversial. In this study we 119

prescribe a concentration of 355 ppmv, midway between the majority of Miocene estimates 120

and the same as used in 1990 control CCSM3 experiments. N2O and CH4 are set to pre-121

industrial concentrations of 270 ppb and 760 ppb, respectively. Aerosol radiative forcing is 122

significantly reduced from the modern. The solar constant is set to 1365 W/m2 (compared to 123

1367 W/m2 for control CCSM3 simulations) and obliquity, eccentricity and precession are set 124

to values appropriate for 1950.125

Initial ocean temperatures and salinities are based on modern global depth averages. 126

This arbitrary initialisation results in an ocean equilibration time of approximately 800 years, 127
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which is evaluated based on depth-integrated ocean mean temperature. We integrate the 128

model for a further 300 years and use the mean of the last 100 years for analysis. Residual 129

energy flux at the surface and top of the model for the final 100 years is 0.1 W/m2 and 130

volume mean ocean temperature drift is < 0.01°C per century (Table 1). We compare our 131

Miocene case with a control case forced with modern boundary conditions appropriate for 132

1990, including a CO2 concentration of 355 ppmv.133

134

4. Results135

a. Surface temperature136

Global annual surface temperature is 1.5°C higher in the Miocene compared to the 137

control case (Table 1). Zonal mean tropical temperatures in the Miocene are 0.5°C lower 138

while polar temperatures are approximately 6°C higher , resulting in a 6.5°C lowering of the139

meridional temperature gradient (Fig. 2a). Maximum warming at both poles in the Miocene140

relative to the control case is approximately equal, however, the majority of polar warming in 141

the northern hemisphere manifests over land, in contrast to the meagre temperature increase 142

over Antarctica (Fig. 2b). At low to middle latitudes, patterns of mean annual surface 143

temperature do not vary considerably between the Miocene and control cases, with most 144

isotherms shifted poleward by several degrees in the Miocene (Fig. 3c and f). Parts of 145

Australia are more than 3°C cooler in the Miocene as it lay outside of the tropics. Reduced 146

Miocene topography in Greenland and North America contributes to higher annual 147

temperatures in these regions. Summertime temperatures in Greenland and a large portion of 148

the Arctic Ocean are above freezing in the Miocene, in contrast to the control case (Fig. 3a 149

and d). A significant portion of the modelled surface warming, particularly at high latitudes, 150

can be attributed to the prescribed darker and broader leaved Miocene vegetation compared 151

to the control case (Herold et al. 2010). Dutton and Barron (1997) showed that differences in 152
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vegetation between the present and Miocene contribute a 1.9°C global warming effect. 153

Similarly, Otto-Bliesner and Upchurch (1997) showed that a vegetated versus un-vegetated 154

Cretaceous world results in a 2.2°C global warming. More recent studies with less idealised 155

vegetation distributions show the same sign of sensitivity to vegetation, though of a 156

significantly smaller magnitude. Micheels et al. (2007) report a climate sensitivity to late 157

Miocene vegetation of 0.9°C, while Henrot et al. (2010) report a 0.5°C sensitivity to middle 158

Miocene vegetation, relative to modern vegetation. Given that total global warming in our 159

Miocene case is 1.5°C relative to the control case, in lieu of a sensitivity experiment we 160

speculate that the warming from our Miocene vegetation alone is closer to these latter studies. 161

Significant increases in continental seasonality occur in the Miocene northern hemisphere 162

due namely to the greater surface area of Eurasia and North America (Fig. 3d and e). 163

164

b. Atmospheric temperature165

Miocene temperatures in the polar troposphere and stratosphere (above 200 mb) are 166

warmer and cooler than the control case respectively, particularly in the northern hemisphere, 167

resulting in a larger vertical temperature gradient (Fig. 4c and d). Cooling of the northern 168

polar stratosphere during wintertime increases relative humidity and consequently increases169

high altitude cloud fraction by up to 20% (not shown). However, a corresponding southern 170

hemisphere wintertime cooling is not observed (Fig. 4c). Substantially greater summertime171

warming occurs in the northern polar troposphere compared to the southern polar troposphere172

in the Miocene (c.f. Fig. 4c and d). This is associated with the large increase in surface area173

of northwest Eurasia as well as reduced surface albedo across northeast North America and 174

Greenland. Comparatively little albedo change – and thus temperature change – is modelled 175

over the Antarctic continent during the southern hemisphere summer. Interestingly, the 176

majority of warming which occurs in the southern polar troposphere occurs concomitantly 177
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with warming in the northern polar troposphere, though to a lesser degree (Fig. 4c). This is 178

attributed to the greatest decrease in Southern Ocean sea-ice occurring during southern 179

hemisphere wintertime, driven by significant Weddell Sea bottom water formation (Herold, 180

N., M. Huber, R.D. Müller and M. Seton, in revision, Paleoceanography). 181

182

c. Jet streams and storm tracks183

The subtropical jet streams in the Miocene are weaker than our control case (Fig. 5), 184

an expected result given the lower meridional temperature gradient (Fig. 2a). The subtropical 185

jet streams are displaced poleward and slightly upward during December-January-February186

(DJF), though not during June-July-August (JJA; Fig. 5c and d). Similarly, intensification of 187

the Miocene northern polar jet stream occurs during DJF, though no corresponding 188

intensification of the southern hemisphere polar jet stream is observed during JJA, mirroring189

simulated stratospheric temperature changes (previous section). Consistent with zonal 190

circulation changes, the zonal distribution of eddy kinetic energy indicates a poleward 191

displacement of middle latitude storms during DJF in both hemispheres, though only a 192

weakening of storm tracks during JJA (Fig. 6). The poleward displacement of eddy kinetic 193

energy is also consistent with a poleward shift in Hadley circulation (Fig. 7).194

195

d. Seasonal precipitation and surface winds196

The Miocene case exhibits broad increases in mean annual precipitation over central 197

and northern Africa, northern Eurasia and North America (>50°N) and Greenland, the 198

majority of which falls during JJA (Fig. 8a and d). Due to the variation in plate configurations 199

between the Miocene and present day, anomaly plots between the two cases are ineffective at 200

examining the regional monsoons. Therefore we examine DJF minus JJA surface wind and 201

precipitation fields for each case, which enables a qualitative assessment of monsoon strength202
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and seasonal drying/wetting (Fig. 8 and 9). In the Miocene case smaller seasonal variations in203

wind strength relative to the control case are modelled over India, the Arabian Sea, the South 204

China Sea and along the coast of the northwest Pacific Ocean (Fig. 9c and f). These 205

differences reflect a weakening of JJA onshore winds from the Arabian Sea and weakening of 206

DJF offshore winds in the northwest Pacific Ocean in the Miocene. In contrast, stronger JJA207

onshore winds over the Bay of Bengal occur in the Miocene case. These changes are208

accompanied by greater maxima in seasonal precipitation change over southern and eastern 209

Eurasia in the Miocene relative to the control case (Fig. 8c and f). In each instance this is due 210

overwhelmingly to higher JJA precipitation in the Miocene case than to differences in DJF 211

precipitation (Fig. 8a and d). More northward landfall of summer precipitation into northeast 212

China in the Miocene case (Fig. 8a and d) is consistent with luvisols indicating greater 213

northward moisture transport compared to the Quaternary (Guo et al. 2008). Generally, 214

however, the changes in Asian monsoon strength between our Miocene and control cases are 215

not strong relative to the simulated effects of Tibetan Plateau uplift or Paratethys expansion 216

(Zhongshi et al. 2007a). As the Tibetan Plateau has a near modern elevation in our Miocene 217

case, such effects are minimal (Fig. 1).218

The present day asymmetry in seasonality about the Rocky Mountains is amplified in 219

the Miocene case, with wetter winters to the northwest and wetter summers to the southeast220

(Fig. 8c and f). This is in contrast to paleobotanical evidence suggesting wet summers in the 221

western United States (Lyle et al. 2008). Summertime onshore winds over northern Australia 222

are substantially weaker in the Miocene case and thus summer monsoon precipitation is 223

significantly weaker over the northern half of the continent. We do not relate this to reduced 224

atmospheric outflow from the Asian winter monsoon (see Miller et al. 2005) but to the 225

location of Australia within the subtropical high in the Miocene. Relatively modest 226

sensitivities to changes in local and global boundary conditions demonstrates the robustness227



11

of a weaker Australian monsoon in our model (Herold et al. 2011). In northern Africa,228

summer precipitation is significantly higher in the Miocene due to the replacement of desert 229

with broadleaf vegetation (Fig. 8a and d), consistent with the sensitivity study of Micheels et 230

al. (2009b).231

232

e. Energy budget233

Atmospheric heat transport differs little between the Miocene and control cases with 234

the largest difference being a weaker peak at 45°N in the Miocene by 0.5 PW (Fig. 10).235

Similarly, ocean heat transport decreases in the northern hemisphere by approximately the 236

same magnitude, thus changes in atmospheric heat transport do not compensate for changes 237

in ocean heat transport (or vice versa) as modelled by Micheels et al. (In Press). Decreased 238

northern hemisphere ocean heat transport in the Miocene case is a result of a significant 239

weakening of North Atlantic Deep Water formation (see Herold, N., M. Huber, R.D. Müller 240

and M. Seton, in revision, Paleoceanography for details). A slight poleward shift in peak241

atmospheric heat transport is associated with a poleward shift in peak eddy kinetic energy 242

(Fig. 6). A near-zero residual surface energy flux at latitudes greater than 60°N indicates 243

radiative equilibrium is achieved without a compensating ocean heat transport (Fig. 11). This 244

increase in residual surface energy compared to the control case is due primarily to greater 245

incoming net surface energy over the sub-Arctic continents in association with vegetation and 246

topography changes. Southern hemisphere heat transport by the atmosphere decreases 247

slightly, though is over compensated by an increase in ocean heat transport.248

249

f. Quantitative comparison with climate proxies250

While proxy records are inconsistently distributed (Fig. 1a) and often subject to large 251

uncertainties (as discussed by Herold et al. 2010), they provide the only means of ground 252
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truth for our Miocene case. Comparisons between models and proxies also introduce their253

own bias due to inherent model uncertainties. The CCSM3 is capable of stable multi 254

millennial climate simulations and is significantly improved over earlier versions. However, 255

it contains significant systematic biases in modelling the present climate (Collins et al. 2006).256

For example, the high resolution CCSM3 simulates mean summer 2 meter air temperatures 257

up to ±16°C different from observations (Collins et al. 2006). Somewhat surprisingly, the 258

same discrepancy is smaller for our low resolution control case, though of a similar 259

magnitude. Thus we compare the differences in 2 meter air temperature and precipitation 260

between our Miocene and control cases to the differences between Miocene proxy records 261

and modern observations (Tables 2 and 3). 2 meter air temperature is chosen as it is a closer 262

representation of the forest canopy, from which most terrestrial proxies of climate are 263

derived. Examination of table 2 clearly shows that simulated changes in temperature at proxy 264

localities (the ‘Simulated warming’ column) are significantly lower than the changes based265

on modern observations and proxy records (the ‘Proxy derived warming’ column). The mean 266

warming across all proxy locations between our Miocene and control cases is 1.3°C, 267

compared to 5.9°C between observations and proxies (Table 2). Thus our Miocene case is 268

significantly too cool. The largest differences between simulated and observed Miocene 269

warmings occur at middle to high latitude localities, indicating that the meridonal 270

temperature gradient is significantly steeper than indicated by proxies, consistent with 271

previous Miocene climate modelling (Steppuhn et al. 2007; Tong et al. 2009).272

We note that there is a clear distribution bias toward the Tethys Sea (Fig. 1a), thus 273

model-data discrepancies are not necessarily indicative of global model performance. 274

However, the mean simulated warming amongst proxy sites (1.3°C; Table 2) is similar to the 275

mean global warming between the Miocene and control cases (1.5°C; Table 1). Precipitation 276

change follows a similar trend to 2 meter air temperature, with differences between 277
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observations and proxies significantly higher than the differences between our Miocene and 278

control cases (Table 3).279

280

5. Discussion281

a. Miocene warmth282

Our Miocene case exhibits a decrease in the meridional temperature gradient of 6.5°C 283

and an increase in global mean temperature of 1.5°C compared with our control case, without284

a higher CO2. This warming is equivalent to the transient climate response of the CCSM3 to a 285

doubling of CO2 (Kiehl et al. 2006) and suggests that differences in topography, bathymetry 286

and vegetation contributed significantly to Miocene warmth. However, the middle latitude 287

divergence of modelled temperature change from observed temperature change indicates that 288

the Miocene case’s meridional temperature gradient is too steep (Table 2) and that global 289

mean temperature was higher than simulated here. This is consistent with previous Miocene 290

studies using slab (Micheels et al. 2007; Steppuhn et al. 2007; Tong et al. 2009; You et al. 291

2009) and dynamical ocean models (Micheels et al. In Press).292

High latitude warming in our Miocene case is compensated to a large extent by 293

meagre increases and even decreases in tropical temperatures (Fig. 3f). This is in stark 294

contrast to the late Miocene coupled atmosphere-ocean simulation by Micheels et al. (In 295

Press), which exhibits zonal mean tropical temperatures over 1°C warmer than modern (their 296

Fig. 3a). A large portion of this difference can be attributed to increased upwelling of cool297

waters in the tropical Pacific in our Miocene case, ostensibly as a response to the open 298

Panama gateway. A similar surface temperature response to opening of the Panama gateway 299

is simulated by Lunt et al. (2008a). The reconciliation of simulated tropical temperatures with 300

proxy records is precluded by the absence or poor fidelity of data.301
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Northern hemisphere polar stratospheric cooling in the Miocene case occurs almost 302

entirely during polar night, decreasing minimum temperatures to approximately -88.8°C (Fig. 303

4d). This is several degrees below the formation threshold of stratospheric clouds (~-83.2°C), 304

suggesting these may have been a viable mechanism for high latitude warming (e.g. Sloan305

and Pollard 1998). We note that the region of stratospheric temperatures below the formation 306

threshold in our Miocene case is small (>80°N) and that lower temperatures would likely be 307

required before stratospheric clouds could have a significant surface effect (Rosenfield 1993). 308

However, higher concentrations of stratospheric CH4 (Beerling et al. 2009) and a warmer 309

tropical tropopause (Randel et al. 2006) due to higher CO2 (e.g. Kürschner et al. 2008) may 310

have further promoted conditions conducive to stratospheric cloud formation.311

Due to sparse and ambiguous proxy records the timing of northern hemisphere 312

glaciation has been the subject of debate. Sediment records from the central Arctic basin 313

indicate the existence of sea-ice from ~45 Ma (Moran et al. 2006) and ice-rafted-debris 314

indicate isolated glaciers in Greenland between 30 – 38 Ma (Eldrett et al. 2007), much earlier 315

than previous records suggested (e.g. Larsen 1994; Zachos et al. 2001). However, the onset of 316

major permanent ice-sheets in Greenland likely did not occur until CO2 dropped below pre-317

industrial concentrations (DeConto et al. 2008; Lunt et al. 2008b). This latter supposition is 318

supported here by simulated above-freezing summertime temperatures over Greenland in our 319

Miocene case (Fig. 3a and d), despite a modern CO2 and an overproduction of sea-ice 320

(Herold, N., M. Huber, R.D. Müller and M. Seton, in revision, Paleoceanography). This 321

surface warming compared to our control case is attributable to the lower elevation and 322

prescribed needleleaf vegetation of Greenland in the Miocene case.323

Miocene heat transport by the atmosphere is lower in the northern hemisphere and 324

consequently does not contribute to the higher surface temperatures relative to the control 325

case (Fig. 10). The near-zero residual surface energy flux at latitudes greater than 60°N (Fig. 326
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11) indicates that the net effect of ocean heat transport is also negligible in the Miocene, as 327

shown by a more than halving of ocean heat transport past this latitude (Fig. 10).328

Consequently, changes in albedo and topography are responsible for high latitude northern 329

hemisphere warming. This is consistent with models of early (Heinemann et al. 2009) and 330

late (Haywood and Valdes 2004) Cenozoic climates as well as various sensitivity studies 331

(Dutton and Barron 1997; Otto-Bliesner and Upchurch 1997). Conversely, Miocene high 332

southern latitudes show near identical atmospheric heat transport compared to the control 333

case though a slightly lower residual surface energy flux (Fig. 11) and greater ocean heat 334

transport (Fig. 10; Herold, N., M. Huber, R.D. Müller and M. Seton, in revision,335

Paleoceanography), resulting in significantly higher surface temperatures over the ocean (c.f. 336

Fig. 2a and 2b). This high latitude warming occurs predominantly at the site of Weddell Sea 337

bottom water formation and to a lesser extent at gird points converted from land in the control 338

case to ocean in the Miocene case (Fig. 3f). Thus the majority of high latitude southern 339

hemisphere warming is due to heat transport to the Weddell Sea and albedo changes 340

associated with a smaller Antarctic continent.341

342

b. Seasonal hydrology343

Recent sensitivity studies have demonstrated that in addition to Tibetan Plateau uplift 344

(Prell and Kutzbach 1992), shrinking of the Lago-Mare (Zhongshi et al. 2007a) and 345

expansion of the South China Sea (Zhongshi et al. 2007b) were critical to the development of346

a monsoon climate in Asia. Our results support the transition to a modern monsoon climate 347

by the early Miocene, as indicated by an exhaustive analysis of proxy records from the 348

Paleocene to present (Guo et al. 2008). While uncertainty exists regarding the area and 349

elevation of the Miocene Tibetan Plateau (Harris 2006 and references therein; Wang et al. 350

2008), the precipitation patterns shown here would likely be robust under a wide range of351
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imposed elevations (Prell and Kutzbach 1992; Zhongshi et al. 2007a). Furthermore, model 352

simulations have demonstrated that the size of the Lago-Mare has little impact on the 353

development of the East Asian monsoon once the elevation of the Tibetan Plateau reaches 354

approximately 3,000 m, and thus is not a large source of uncertainty in our study (Zhongshi et 355

al. 2007a; Zhongshi et al. 2007b). Expectedly then, the existence and dimensions of the Asian 356

monsoon in our Miocene case has been largely predetermined by the near-modern elevation 357

of the Tibetan Plateau.358

The northwest coast of the United States experiences higher wintertime precipitation359

in the Miocene case, though no change in summertime precipitation (Fig 8). Additionally, no 360

change in summertime effective moisture (evaporation minus precipitation) is observed (not 361

shown). This reflects an amplification of modern day seasonality when conversely fossil f lora 362

indicate wet summers along the west coast during the Miocene (Lyle et al. 2008). It has been 363

suggested that wetter summers in the western United States may have been driven by warmer 364

North Pacific SSTs (Lyle et al. 2003). The warmer SSTs in our Miocene case suggest that 365

this was not the case. Unpublished results from an identical Miocene simulation run with a 366

CO2 concentration of 560 ppmv shows greater annual precipitation along the west coast of 367

Canada but no significant change in the western United States. Alternatively, Ruddiman and 368

Kutzbach (1989) find that relatively high North American topography results in summer 369

drying of the west coast due to onshore winds acquiring a more northerly aspect. This is 370

associated with the western limb of the deepening summer low that forms over North 371

America as mountain ranges are uplifted (Ruddiman and Kutzbach 1989). Northerly winds in 372

summer are observed along the west coast in both cases (Fig. 9a and d). The uplift history of 373

North America is controversial although a recent isotope study suggests high elevations by 374

the Eocene-Oligocene (Mix et al. 2011), which is broadly reflected by the prescribed 375

elevation in our model (75% of the modern; Herold et al. 2008). Thus, if lower elevations are 376
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considered then this may partially explain the absence of wet summers along the west coast 377

in our Miocene case. We also note that reproduction of precipitation patterns are significantly378

improved under the high resolution configurations of the CCSM3 (c.f. Meehl et al. 2006) and 379

improved convection schemes (Boos and Kuang 2010).380

381

c. Atmospheric changes382

The poleward shift of the subtropical jet streams in the Miocene is consistent with 383

model simulations of increasing CO2 (Lorenz and DeWeaver 2007). However, the entire shift384

in our Miocene case occurs during DJF (Fig. 5). The timing and seasonal nature of these 385

changes may be attributable to the sensitivity of the subtropical jet streams to extratropical 386

stratospheric cooling (Polvani and Kushner 2002; Fig. 4). Polvani and Kushner (2002) show387

that cooling of the polar stratosphere causes a poleward shift of the subtropical jet stream, a 388

response which strengthens with increases in lapse rate. Thus as no significant cooling of the 389

northern hemisphere polar stratosphere occurs during JJA (c.f. Fig. 4c and d), no poleward 390

shift of the summer subtropical jet streams is simulated (Fig. 5c). The significant increase in391

the northern hemisphere polar vertical temperature gradient during DJF (Fig. 4d) is also392

responsible for the stronger zonal wind response of the northern polar jet compared to the 393

southern hemisphere (Fig. 5d). This stronger cooling increases relative humidity which 394

subsequently fuels cloud genesis. However, the cause of this cooling, and why it occurs only 395

in the northern hemisphere during winter, is not clear from model diagnostics. Interestingly, 396

uniform bipolar cooling of the stratosphere is modelled in modern doubled CO2 experiments 397

(Rind et al. 1998) and under Paleocene boundary conditions (Rind et al. 2001), suggesting the 398

uni-polar response in our results may be a consequence of Miocene topography.399

Miocene eddy kinetic energy maxima also shift poleward during DJF (Fig. 6d). 400

However, only the northern hemisphere storm tracks intensify during these months, while the 401
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southern hemisphere storm tracks weaken. During JJA, both northern and southern402

hemisphere storm tracks weaken in the Miocene (Fig. 6c). Poleward shift of the storm tracks, 403

like zonal circulation, is consistent with the effects of increasing CO2 (Yin 2005). Similarly, 404

the modelled expansion of the Hadley cells are consistent with an increase in global mean 405

temperature (Frierson et al. 2007).406

407

d. Experiment caveats408

Biases in the low resolution CCSM3 have been previously documented and relate 409

chiefly to coarse resolution, component coupling and parameterisation of sub grid scale 410

processes (Stan et al. 2010; Yeager et al. 2006). Modelling time periods prior to instrument411

records adds further uncertainty regarding model boundary conditions. Parameter biases may 412

also be more or less severe in paleoclimate simulations (e.g. Lyle 1997). 413

Uncertainties in our topography and bathymetry exist due to 1) the low resolution 414

with which the CCSM3 represents the physical Earth. The ramifications of low model 415

resolution on model-data comparisons is problematic, as discussed in Herold et al. (2010).  2) 416

Availability of geological evidence limiting our ability to constrain tectonic events in high 417

temporal and spatial detail. For example, fossil flora and oxygen isotope paleoaltimetry418

suggests that the southern and central Tibetan Plateau reached near modern elevations by 15 419

Ma (Spicer et al. 2003) or even 35 Ma (Rowley and Currie 2006), however, relatively little is 420

known of the corresponding lateral and north-south uplift of the plateau (Harris 2006 and 421

references therein). Thus the near modern elevation of the entire Tibetan Plateau in our 422

topography may represent the upper end of possibilities. 423

Miocene bathymetry is also subject to large uncertainties in areas such as the North 424

Atlantic and Drake Passage. At present, the Greenland-Scotland-Ridge provides a crucial 425

barrier to deep water outflow from the Greenland-Norwegian Seas. However, given that no 426
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deep water formation occurs in the Greenland-Norwegian Seas in our Miocene case the 427

climatic effect of changes in sill depth are uncertain. The relatively deep Greenland-Scotland-428

Ridge in our Miocene case (Fig. 1) appears to be crucial to the northward flow of warm 429

subtropical water below the mixed-layer and it is unclear what effect the blocking of this 430

water would have on surface climate (see Herold, N., M. Huber, R.D. Müller and M. Seton, 431

in revision, Paleoceanography). The depth of the Drake Passage is important in determining 432

the formation of North Atlantic Deep Water. Gradual deepening of the Drake Passage has 433

been shown to initiate North Atlantic Deep Water formation, consequently warming the 434

North Atlantic and cooling the South Atlantic (Sijp and England 2004). While the timing of 435

the Drake Passage opening is controversial it is generally believed to have been at near 436

modern depths by the Miocene. However, it has been suggested that temporary constriction 437

of the passage prior to the middle Miocene may have weakened the Antarctic Circumpolar 438

Current and contributed to Miocene warming (Lagabrielle et al. 2009).439

Miocene vegetation is reconstructed from 29 macrofossil records (Wolfe 1985) with 440

minor amendments (Herold et al. 2010). The exclusion of microfossils precludes grasslands 441

and by association the high pressure cells associated with Hadley circulation (Cosgrove et al. 442

2002), thus our prescribed vegetation may be associated with a climate warmer than is 443

justified. More complete compilations of fossil flora need to be synthesised into vegetation 444

distributions which consider the current understanding of Miocene hydrology and ocean and 445

atmosphere circulation. Vegetation models can also be utilised, ideally in concert with fossil 446

flora (e.g. Micheels et al. 2007). Middle Miocene vegetation distributions from a dynamic 447

global vegetation model forced with climate model output present a cooler and more detailed448

global vegetation compared to this study (Henrot et al. 2010). However, while vegetation 449

models circumvent uncertainties in data extrapolation and assumptions of atmospheric and 450
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oceanic circulation, they contain their own model uncertainties and are subject to climate 451

model bias (Shellito and Sloan 2006).452

In addition to topography, bathymetry and vegetation small parameter differences 453

exist between our Miocene and control cases (CH4, N2O, solar constant, aerosols and orbital 454

values). Such differences make the attribution of climate changes to specific boundary 455

conditions more problematic. However, based on radiative forcing estimates (e.g. Forster et 456

al. 2007) it is arguable that the reduction in our Miocene case of CH4 and N2O concentrations 457

as well as the solar constant would constitute a net Miocene cooling. While aerosol radiative 458

forcing is also lower in our Miocene case relative to the control case, this, along with the 459

negligible change in orbital parameters, is unlikely to result in a net cooling. However, this 460

can only be unequivocally determined by a sensitivity experiment and we also note that the 461

wavelengths of optimum absorption by different atmospheric agents overlap. In addition, our 462

control case should, if anything, be warmer than modern observations given that it has 463

equilibrated to the prescribed 1990 concentrations of greenhouse gases. This is in contrast to464

observations which represent a transient response to radiative forcing up until the period 465

observed (1950 – 1999, Table 2). The net effect of these model inconsistencies is that the 466

simulated warming between our Miocene and control cases should be considered 467

conservative.468

The role CO2 played in early to middle Miocene warmth and subsequent cooling 469

continues to be a large hindrance to understanding Miocene climate. The use of modern CO2470

in our Miocene case plays a potentially large role in explaining the discrepancies with proxy 471

records (Tables 2 and 3). While marine based CO2 proxies still place concentrations at 472

approximately present day values (Henderiks and Pagani 2008; Tripati et al. 2009) recent 473

upward revisions based on pedogenic carbonates (Retallack 2009) and leaf stomata indices 474

(Kürschner et al. 2008; Retallack 2001) suggest CO2 was considerably higher. Ice-sheet 475
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modelling (DeConto et al. 2008; Lunt et al. 2008b) also supports a Miocene CO2 at least as 476

high as the modern (c.f. Pagani et al. 1999). Furthermore, chemistry transport modelling 477

suggests CH4 concentrations were above present during the Miocene (Beerling et al. 2009),478

thus Miocene greenhouse forcing was very likely higher than prescribed in our Miocene case.479

Nevertheless, a slab ocean model forced with output from our Miocene case and a doubled 480

CO2 concentration of 710 ppmv (Herold et al. 2011) does not exhibit a sufficient lowering of 481

the meridional temperature gradient to explain our model-data discrepancies, consistent with 482

previous studies (Steppuhn et al. 2007; Tong et al. 2009; You et al. 2009).483

484

6. Conclusions485

We present quantitative constraints on the Miocene climate system incorporating486

reconstructed vegetation, topography and bathymetry. A decrease in the meridional 487

temperature gradient of 6.5°C and increase in global mean temperature of 1.5°C compared to 488

our control case occurs without an increase in CO2. Therefore a significant portion of 489

Miocene warmth can be attributed to factors other than greenhouse gases. Nevertheless, 490

similar to previous uncoupled models, our model-data analysis implicates above modern CO2491

or similar acting mechanisms during the Miocene, consistent with stomatal records492

(Kürschner et al. 2008). More tropical and polar proxy records are required to reliably493

constrain the meridional temperature gradient.494

Energy budget and heat transport calculations indicate that increased ocean heat 495

transport and reduced albedo were responsible for above modern temperatures at high 496

southern latitudes in the Miocene (Herold, N., M. Huber, R.D. Müller and M. Seton, in 497

revision, Paleoceanography). Conversely, reduced atmosphere and ocean heat transport in 498

the northern hemisphere indicates that reduced albedo and topography were responsible for 499
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warming at high northern latitudes. This dichotomy indicates that both changes in ocean 500

circulation and land characteristics were responsible for early to middle Miocene warmth.501

Changes in atmospheric temperature, wind and eddy kinetic energy are surprisingly 502

consistent with model predictions of future global warming due to increasing CO2. However, 503

significant intensification of the polar jet stream is only observed in the northern hemisphere. 504

Furthermore, poleward displacement of the subtropical jet streams occurs only during DJF. 505

This polar and seasonal asymmetry is attributed to significantly greater cooling of the polar 506

stratosphere during DJF, particularly in the northern hemisphere. Results from this study and 507

Herold et al. (in revision, Paleoceanography) suggest future work should address sensitivity 508

to various changes in topography and bathymetric choke points, along with elevated 509

greenhouse gas concentrations.510
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Figure 1. Topography and bathymetry for the Miocene (a) and control case (b). Terrestrial 841

temperature and precipitation proxies indicated by red triangles (Tables 2 and 3). L-M 842

indicates Lago-Mare.843

Figure 2. Zonal mean surface temperature (a) and land temperature (b) for the Miocene 844

(solid) and control case (dashed). Dotted line indicates anomaly (right axis).845

Figure 3. Control case surface temperatures for June-July-August, December-January-846

February and the annual mean (a-c). Miocene – control case surface temperature anomalies (d847

-f).848

Figure 4. Zonal atmospheric temperature for the control case during June-July-August (a) and 849

December-January-February (b). Miocene – control case anomalies (c and d).850

Figure 5. Same as figure 4 except for zonal wind.851

Figure 6. Same as figure 4 except for eddy kinetic energy.852

Figure 7. Annual meridional overturning circulation for the control case (a) and the Miocene 853

– control case anomaly (b).854

Figure 8. Precipitation for the Miocene (a-c) and control case (d-f) for June-July-August 855

(JJA), December-January-February (DJF) and DJF-JJA anomalies.856

Figure 9. Same as figure 8 except for surface wind.857

Figure 10. Ocean (red) and atmosphere (blue) heat transport for the Miocene (solid) and 858

control case (dashed).859

Figure 11. Residual surface energy flux for the Miocene (solid line) and control case (dashed860

line). Dotted line indicates anomaly (right axis).861

862

























Table 1. Global mean CCSM3 diagnostics.
Miocene Control

Residual top of model energyflux (W/m2) -0.086 0.023
Residual surface energy flux (W/m2) -0.109 0.003
Surface temperature (°C) 15.38 13.88
Surface temperature – land only (°C) 8.70 7.41
Surface albedo 0.11 0.15
Cumulative precipitation (mm/year) 104 99
Net shortwave radiation at surface (W/m2) 163.5 158.6
Net longwave radiation at surface (W/m2) 57.9 57.8
Sensible heat flux (W/m2) 22.6 21.6
Latent heat flux (W/m2) 83.1 79.2



Table 2.Temperature change simulated by the CCSM3 versus change between modern observations and proxy records.

Location Paleo
Lon/Lata

Control case 2 
meter air temp (°C)

Miocene case 2 
meter air temp (°C)

Simulated 
warming (°C)b

Modern observed 2 
meter air temp (°C)c

Miocene proxy 
temp (°C)d

Proxy derived 
warming (°C)e Reff

Weisselster and Lausitz Basin, NE Germany 7/52 5.5 7.3 1.8 8.6 18 9.4 1
Lower Rhine Embayment, NW Germany 7/52 5.5 7.3 1.8 8.6 18.25 9.7 2
Schrotzberg, Southern Germany 6/47 8.8 7.4 -1.4 8.5 15.5 7.0 3
NW Bulgaria 21/42 11.5 13.6 2.1 6.8 17 10.2 4
Lower Rhine Embayment, NW Germany 7/52 5.5 7.3 1.8 8.6 15.95 7.4 5
Schrotzberg, Southern Germany 6/47 8.8 7.4 -1.4 8.5 15.45 7.0 6
Kovago-old al 17/47 8.1 9.0 0.9 10.4 18.65 8.2 7
Southern Germany (see ref for locations) 8.9/47.3 8.2 7.4 -0.8 8.0 18.95 10.9 8
Ukraine 20.5/47.6 8.1 9.0 0.9 10.0 17 7.0 9
Bigadic, Turkey 25.1/38.3 14.9 16.7 1.8 12.9 19.25 6.3 10
Samsun-Havza, Turkey 33.3/40 11.8 14.6 2.8 8.5 19 10.5 10
Pannonian Basin 18.5/44.55 7.8 11.8 4.0 10.4 15.25 4.8 11
Popovac, Serbia 18.3/42.9 11.5 11.8 0.3 8.9 17.85 8.9 12
Latrobe Valley, SE Australia 146/-45 12.8 11.0 -1.8 14.2 19 4.8 13
Bacchus Marsh, SE Australia 144/-45 15.7 10.8 -4.9 13.0 13 0.0 14
Yallourn, SE Australia 146/-45 12.8 11.0 -1.8 14.2 15.5 1.3 15
Kangaroo Well, Central Australia 129.7/-29.7 23.9 20.7 -3.2 21.2 17 -4.2 16
Yunnan Province, SW China 95/22 23.0 23.7 0.7 23.1 19.65 -3.5 17
Shanwang, China 116.5/38.5 8.4 10.1 1.7 12.8 16.25 3.4 18
Shanwang, China 116.5/38.5 8.4 10.1 1.7 12.8 12.7 -0.1 19
Shanwang, China 116.5/38.5 8.4 10.1 1.7 12.8 10.35 -2.5 20
Namling Basin, Southern Tibet 86.9/30.8 -5.1 -1.8 3.3 -2.3 6.8 9.1 21
Picture Gorge Subgroup, North America -114.7/44.8 3.4 6.8 3.4 7.1 12 4.9 22
Eastern Oregon, North America -114/45 3.4 5.3 2.0 7.1 12.7 5.6 23
Alaska, North America -135.6/69 -11.3 -6.8 4.4 -7.7 9 16.7 24
Cape Blanco, North America -116.3/45 9.1 7.4 -1.7 7.1 16.6 9.5 25
Waeaverville, North America -116.3/43 6.1 9.3 3.2 7.3 16.2 8.9 25
Cook Inlet, North America -147/62 -6.7 -0.1 6.6 2.4 11.2 8.8 26
Potosi, Bolivia -62.8/-21.7 16.8 24.9 8.1 12.3 21.6 9.3 27
Fejej, Ethiopia 33.6/2.3 23.0 24.3 1.3 28.9 26 -2.9 28

MEAN: 1.3 5.9
NOTE: Proxy records from Herold et al. (2010).
a Where paleo coordinates are not provided by reference values are calculated using modern coordinates, a plate kinematic model and the rotations of Müller et al. (2008).
b Column three subtracted from column four.
c Uses the dataset of Willmott and Matsuura (2001) for 2 meter air temperature spanning 1950 - 1999.
d Where a range of values is given, the midpoint is used.
e Column six subtracted from column seven.
f References – 1) Mosbrugger et al. (2005), 2) Utescher et al. (2000), 3) Uhl et al. (2006), 4) Ivanov et al. (2002), 5) Mosbrugger and Utescher (1997), 6) Uhl et al. (2003), 7) Uhl et al. (2007), 8) 
Bohme et al. (2007), 9) Syabryaj et al. (2007), 10) Akgun et al. (2007), 11) Erdei et al. (2007), 12) Utescher et al. (2007), 13) Sluiter et al. (1995), 14) Greenwood (1994), 15) Kemp (1978), 16) 
Megirian et al. (2004), 17) Zhao et al. (2004), 18) Liang et al. (2003), 19) Yang et al. (2007), 20) Sun et al. (2002), 21) Spicer et al. (2003), 22) Sheldon (2006), 23) Retallack (2004), 24) White and 
Ager (1994), 25) Wolfe (1994b), 26) Wolfe (1994), 27) Gregory-Wodzicki et al. (1998), 28) Wiemann et al. (1999).



Table 3. Precipitation change simulated by the CCSM3 versus change between modern observations and proxy records.

Location Paleo
Lon/Lata

Control case 
precipitation 

(mm)

Miocene case 
precipitation 

(mm)

Simulated 
precipitation 

change (mm)b

Modern observed 
precipitation (mm)c

Miocene proxy 
precipitation 

(mm)d

Proxy derived 
precipitation 

change (mm)e
Reff

Weisselster and Lausitz Basin NE Germany 7/52 771.8 942.9 171.1 685.7 1300 614.3 1
Lower Rhine Embayment, NW Germany 7/52 771.8 942.9 171.1 685.7 1350 664.3 2
Schrotzberg, Southern Germany 6/47 813.7 1154.1 340.4 1109 1300 191 3
NW Bulgaria 21/42 504.7 568.1 63.4 693.7 1200 506.3 4
Lower Rhine Embayment, NW Germany 7/52 771.8 942.9 171.1 685.7 1293 607.3 5
Southern Germany (see ref for locations) 8.9/47.3 807.1 1154.1 347.0 1222.4 1146 -76.9 8
Ukraine 20.5/47.6 609.0 941.5 332.6 588.5 1168 579 9
Bigadic, Turkey 25.1/38.3 391.4 436.7 45.3 758.7 1270 510.8 10
Samsun-Havza, Turkey 33.3/40 374.6 648.7 274.1 413 1270 856.5 10
Pannonian Basin 18.5/44.6 714.1 664.9 -49.2 550.2 1074 523.8 11
Popovac, Serbia 18.3/42.9 504.7 664.9 160.2 789.3 1434 644.7 12
Latrobe Valley, SE Australia 146/-45 375.0 798.1 423.1 832.2 1700 867.8 13
Yallourn, SE Australia 146/-45 375.0 798.1 423.1 832.2 1500 667.8 15
Kangaroo Well, Central Australia 129.7/-29.7 387.8 448.8 61.0 237.1 450 212.9 16
Yunnan Province, SW China 95/22 566.7 2167.4 1600.7 1136.1 1235 98.9 17
Shanwang, China 116.5/38.5 1056.2 1107.0 50.7 725.4 1139 413.1 18
Shanwang, China 116.5/38.5 1056.2 1107.0 50.7 725.4 1494 768.3 19
Picture Gorge Subgroup, North America -114.7/44.8 808.9 797.1 -11.8 266 700 434 22
Eastern Oregon, North America -114/45 808.9 837.1 28.2 266 851 585 23

MEAN: 245 509
NOTE: Proxy records from Herold et al. (2010).
a Where paleo coordinates are not provided by reference values are calculated using modern coordinates, a plate kinematic model and the rotations of Müller et al. (2008).
b Column three subtracted from column four.
c Uses the dataset of Willmott and Matsuura (2001) for land precipitation spanning 1950 - 1999.
d Where a range of values is given, the midpoint is used.
e Column six subtracted from column seven.
f References as in Table 2.


