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Abstract—The GPlates Geographic Information System (GIS)
is a well-established tool for visualising and interacting with
multimodal geo-data reconstructed through space and geological
time. It overcomes the complexity of changing spatial reference
frames due to plate-tectonic processes. Combining vast datasets in
this manner is increasing the analysis complexity, with traditional
visualisation-based approaches becoming ineffective in extracting
key information and discovering hidden associations. This paper
discusses the nature of these complexities, followed by the
presentation of an extension to GPlates, involving the addition of
interactive quantitative data-mining tools and capabilities, better
suited to coping with the inherent analysis complexities. A case-
study is used to demonstrate the system’s unique capabilities.
The integrated software infrastructure has manifested itself as a
powerful knowledge discovery platform, which has the potential
to lead to new high-impact discoveries in the Earth Sciences.

I. INTRODUCTION

The GPlates plate tectonic reconstruction tool [1] is an open-

source, cross platform Geographic Information System (GIS)

with the unique ability to reconstruct geo-data through both

space and time. The software was developed by the EarthByte

group as a collaboration between The University of Sydney,

Caltech and the Geological Survey of Norway, with a focus

on data pertaining to ”deep time” Earth Science. GPlates has

played an intrinsic role as a primary tool in several high impact

studies involving interactions between major Earth processes

on a global scale e.g. [2], [3], [4].

The large-scale accumulation of digital geo-data, interoper-

ability standards (e.g. GeoSciML [5]) and improved intercon-

nectivity is now creating new opportunities within Earth Sci-

ence to amalgamate traditionally disparate datasets (and com-

munities) across several modes of data including geochemistry,

geophysics, structural geology, plate tectonics etc. This in

turn is facilitating answering complex scientific questions such

as how continents evolved, which can only be answered

by incorporating all these modalities. The impact of such

an approach has significant potential in applications such as

creating predictive models for mineral and energy exploration,

and in designing more effective geo-hazard models.

GPlates bridges a technological gap in allowing a large

variety of spatial data-types to be attached to a unified plate-

tectonic reference frame, facilitating the reconstruction of

Earth processes acting through geological time. In this paper

we discuss the fact that combining the various datasets together

results in a significant increase in the analysis complexity,

limiting the effectiveness of traditional visualisation-based

approaches. A quantitative spatio-temporal extension is pro-

posed, consisting of two primary components, namely a coreg-

istration tool for defining relationships between datasets in a

flexible, recursive fashion, and a data mining environment for

customising a particular analysis workflow, and making use of

advanced unsupervised and supervised statistical approaches

for studying the intrinsically high-dimensional data. A visual-

programming environment with a plugin infrastructure is used

to design sophisticated workflows without requiring software

programming skills, with a library of high-level processing

units allowing for workflow configuration at the appropriate

conceptual level. GPlates together with these additional com-

ponents is now becoming a powerful knowledge discovery

tool, with flexibility and interoperability built in to maximise

both the depth and breadth of possibilities.

The paper is structured as follows: in Section II the design

considerations are discussed, followed by an outline of the

design in Section II. The two primary modules developed

are then discussed, namely a flexible spatio-temporal data

coregistration tool in Section IV and an interactive data-mining

environment in V. The efficiency of the system is demonstrated

via a case study in Section VI, and conclusions are presented

in Section VII.

The primary contribution of this paper is the presentation

of the high level design considerations and technology com-

ponents that have been translated into a software implemen-

tation. This technological step is helping to shift what has

traditionally been a qualitative data exploration methodology

(and community) into the more quantitative realm, where

increasingly complex data analyses can be undertaken using

powerful data mining and image processing methodologies.

II. DESIGN CONSIDERATIONS

In developing the knowledge-discovery framework, a num-

ber of considerations need to be made, ensuring a design that

is user-friendly, flexible and extensible. In this section the

primary considerations are discussed, leading to a high-level



design. In order to contextualise the discussion, the example

in Figure 1 is presented, demonstrating the reconstruction of

several spatial datasets at two different time intervals. Even

in this relatively simple study, the large number of possible

interactions and potential associations is evident.

Fig. 1. An example study involving investigation of the time-dependent
associations between ore deposits along the Andes, and the plate-kinematic
dynamics along the Andean subduction zone (blue line) for two time slices,
namely 60 million years in the past (top), and 100 million years (bottom).
The arrows depict time-varying convergence velocities, coloured points along
the Andes represent the relative mineralisation ages of ore deposits, and the
coloured background raster represents the reconstructed age of the sea-floor.

A. Data-analysis complexities

Combining several Earth Science datasets together presents

a number of challenges:

• High dimensionality: as more associations between

datasets are combined, the dimensionality of the resultant

derived datasets increase significantly. This makes it more

difficult to identify important relationships using visual-

isation methodologies, and the significance of identified

co-associations between variables require large datasets

to justify statistically.

• Large datasets: developing increasingly complex models

of Earth processes typically involves large datasets to

achieve statistical confidence. Larger datasets can make

identifying important patterns and relationships more

difficult, and increases the computational and analysis

burden.

• Spatial and temporal variations: relationships and associa-

tions varying both spatially and temporally over a moving

spatial reference frame increases the complexity of as-

sessment, and consequently identifying significant struc-

ture/associations within the data becomes more difficult.

Several levels of spatial scale must also be considered.

• Uncertainty, variability, noise and missing values: these

are inherent factors that are important to incorporate in

order to develop models that generalise well, and detect

associations that are significant.

• Mixed data types: Spatial geo-data is a mixture of a

variety of different data types, from vector to raster-

geometry, with a combination of categorical, ordinal

and real-valued properties (meta-data). Other software

tools are also often involved in an analysis workflow,

the outputs of which are integrated with other spatial

data. The scaling and distribution of such model outputs

requires careful attention when co-analysing with other

spatial data.

Data mining and statistical analysis approaches are important

for dealing with these challenges. These approaches explicitly

deal with measurement variability and noise, and can simulta-

neously assess large datasets without bias. High dimensionality

is dealt with using approaches such as decorrelation, feature

selection and projections to lower-dimensional spaces. The

AILab Orange data-mining software [6] has been chosen as

a suitable tool for this purpose, providing a large library of

supervised and unsupervised components, as well as compo-

nents to filter, map and select data as required. Importantly

this library allows external plugins to be developed. Such

a capability is required in order to develop preprocessing,

translation and mapping tools specific to time-varying spatial

data, resulting in data structures converted to a form suitable

for data-mining.

B. Multiple use-cases

Multitudes of workflows are conceivable for analysing prob-

lems pertaining to the Earth Sciences, and thus a software

solution cannot be tailored to a few specifications. Rather

the design should allow new workflows to be implemented

in a flexible manner, providing interfaces facilitating custom-

development of new and unique workflows. A solution that

allows for abstraction, extensibility and reuse would also

be important, lending itself to continuous improvement and

collaboration. The approach chosen is to develop a library of

high-level modules that are made available to a user. The user

would then set up relationships between the various modules

according to the required data flow.

C. Abstracting programming complexity

The users of the software are typically scientists with the

need to implement complex quantitative analysis workflows.

The design should allow users that are not expert programmers

to customise the required work-flow, where effort is spent on

solving the underlying scientific problem, whilst minimising

other overheads. The approach adopted uses a visual program-

ming approach, in which modules are developed to achieve

a specific high-level functionality (analagous to a building



block), providing an abstraction of the underlying program-

ming complexity. Users then connect these modules together

visually, achieving a workflow that mimics the conceptual

data-flow. The AILab Orange Visual Canvas [6] provides such

an interface, as well as flexibility in a number of other areas.

D. Other

In order to maximise the accessibility of the software,

and for compatibility with GPlates licensing, an open-source,

cross-platform solution is necessary. Another requirement is

a mechanism for interactivity between the data mining and

GIS environments. This allows for combined visualisation and

quantitative approaches. Consider for example geochemical

data, where cluster analysis is applied to the multivariate

elemental properties in order to identify samples with similar

composition. In this case the data mining task would be to

perform the cluster analysis and assign class labels, which

could then be used to colour the respective spatial locations

in the GIS environment.

III. HIGH-LEVEL DESIGN

Section II discussed the primary factors taken into consid-

eration for developing a successful design, as well as some

design decisions taken. In Figure 2 the primary components

of the GPlates knowledge-discovery platform are depicted. A

Fig. 2. High-level depiction of the GPlates knowledge-discovery platform,
consisting of the interactive spatio-temporal GIS, coregistration tool, visual-
workflow builder, and data-mining environment.

data coregistration tool is the interface between the spatio-

temporal GIS domain and the data-mining domain. This tool

allows relationships to be defined between datasets across

time, and operates transparently across different data and

geometry types. The coregistration tool allows multiple re-

lationships to be specified recursively between a seed and

any reference dataset. For example the distance between the

seed and reference datasets can be computed, or a particular

property pertaining to a reference dataset at the location of

the seed (for the example in Figure 1, typical associations are

computing the age of the downgoing sea-floor at each ore-

deposit location, and the distance to the subduction zone).

The output of this component is an array, in which each

row corresponds to a particular seed geometry, and columns

correspond to the chosen association. The array has a third

dimension, capturing associations that vary with time, i.e.

each array cell results in a time series. The coregistration

tool thus translates data in the complex spatio-temporal data

representation into a well-defined format that can be processed

directly by signal processing and data-mining tools.

A visual programming software tool provides a library of

high-level components, together with a design canvas upon

which users develop a desired workflow by interactively plac-

ing and connecting module components. These components

abstract programming complexity, allowing the workflows to

be developed in an intuitive fashion without unnecessary

programming complexities. Finally an interactive data-mining

infrastructure provides capabilities to assess data, discover

unseen associations, and train statistical models on data origi-

nating from the coregistration tool. Feedback is provided to the

GIS to allow spatial and temporal feedback from a quantitative

analysis (as demonstrated in the case study).

IV. DATA COREGISTRATION TOOL

The coregistration tool is used to recursively define desired

relationships between datasets, and is transparent to both ge-

ometry and attribute types. Defining an association between a

seed and reference dataset involves four primary steps, namely

seed dataset selection, reference dataset selection, association-

type selection, and then defining the association parameters.

The tool is used recursively to systematically build a table

of associations, allowing for large numbers of simultaneous

analyses. The output is a table consisting of a number of

rows (corresponding to each seed), and columns (the number

of coregistration operations defined), repeated across time

according to the number of time steps. This output is then fed

to the input of a data-mining tool. An example demonstrating

the definition of two time-varying relationships between a seed

and reference dataset is shown in in Figure 3. An example

coregistration output is then shown in Figure 4 at a particular

point in time. In this example mineral deposits are compared

to their geological environment through time.

A. Seed dataset definition

A seed dataset consists of a base dataset with respect to

which other associations or relationships are to be computed

e.g. known gold ore-deposit locations where we would like to

investigate their relationships with other datasets. The output

of the coregistration tool will consist of a data structure with

a number of rows consisting of the size of the seed dataset.

B. Reference dataset definition

In a second step a dataset for which a relationship is to

be computed with respect to the seed dataset is chosen. For

example we might choose to study the gravitational anomaly

data at the locations of known gold deposits.



Fig. 3. Example showing specification of two coregistration specifications.
The distance from the seed dataset (MajorElementsAsReported) is computed
between the nearest reference dataset (Hotspots) and it’s corresponding name.
The time-series of these distances can then be computed through time.

Fig. 4. Example coregistration tool output for a particular point in time.
In this example mineral deposits in Australia are analysed with respect to
palaeo-geography i.e. the time-varying geography.

C. Defining the association type

Two types of associations are possible. The first are rela-

tional associations, in which statistics pertaining to the prox-

imity between the seed and reference datasets are computed,

such as their relative distances through time, the number

present within a region of interest etc. An example would

be the distance between gold deposits and the nearest faults.

The second type is a neighbourhood association, in which

properties or characteristics of data in the same neighbourhood

as the seed data is computed. For example, we may wish to

compute the gravitational response or mean elevation at the

location of each gold deposit.

D. Association operator definition

Once the reference dataset (with corresponding association

type) has been defined, the final step is to define the nature

of the association, resulting in a scalar outcome. For exam-

ple, when computing the gravitational response at seed gold

deposit locations, we would define the necessary parameters

at this point, for example specifying the mean value within a

radius of 2km.

V. INTERACTIVE DATA-MINING ENVIRONMENT

The output of the coregistration tool is essentially a 3-

dimensional matrix structure, with rows corresponding to seed

geometry entities, and columns to defined relationships with

other datasets. The third dimension characterises the temporal

variations in the associations. The AILab Orange [6] software

tool has been combined with GPlates to fulfil the data-mining

role. It consists of a comprehensive library of functionalities,

with the following notable features:

• Data manipulation tools: Several powerful components

are present to flexibly combine, concatenate, filter by

multiple criteria, sort and map data.

• Interactive visualisation tools: Statistical summaries, vi-

sualisation of projected data, and scatter-plots aid in

finding associations and understanding the data.

• Machine learning tools: A comprehensive set of unsu-

pervised and supervised classification components exist,

which are essential for the desired knowledge-discovery

capabilities e.g. finding structure in data, clustering sim-

ilar multivariate patterns, building statistical models and

testing hypotheses.

An important aspect is the ability to develop custom-

components, complementing the library of existing general

tools with application-specific ones. A plugin library has been

developed for GPlates, consisting of a number of specific

components for extracting features from time-series, investi-

gating the geological environment in the past, or data-patterns

leading to the occurrence of a particular phenomenon e.g. an

ore deposit. AILab Orange also provides a visual program-

ming environment, thus allowing workflows to be developed

interactively by connecting required components together. As

discussed earlier, this capability is very attractive for this

design in abstracting underlying programming complexities.

An example of the visual programming environment, also

depicting the GPlates plugin library, is shown in Figure 5

below, demonstrating how a specific data-mining workflow has

been developed to solve a particular problem.

VI. CASE STUDY: UNRAVELLING A COMPLEX

GEODYNAMIC ENVIRONMENT

The present-day configuration of the Earth’s crust in North

America between the Yellowstone hotspot and the adjacent

region extending to the west coast evolved into its present

state via a complex combination of magmatic processes act-

ing both at the plate boundary and from below due to a

mantle plume. This interaction occurred over the past 60-

80 million years, as the North American continent shifted

over the Yellowstone hotspot (see e.g. [7]). In this case study

we combine a number of datasets through space and time

using the GPlates knowledge-discovery tool, with the objective



Fig. 5. The Orange visual-programming environment, with GPlates plugin
components shown, and a simple example workflow.

of partitioning crustal regions that were influenced by the

plume interaction. This can have significant implications for

understanding the nature of geological processes, including

ore-deposit prediction. The following datasets were combined:

• The North American Volcanic and Intrusive Rock

Database (NAVDAT) [8], consisting of aged geochemical

samples, with the data filtered to include samples under

60 Ma, within the greater vicinity of Yellowstone.

• Global present-day hotspot dataset developed by the

EarthByte group.

• Earthbyte global plate model [4] to define the motion of

the North American plate over time.

These datasets are depicted in Figure 6, reconstructed back

22 Ma. The data-analysis objective of this study is firstly to

Fig. 6. Case study datasets as depicted in GPlates at 22 Ma in the past,
overlaid on the ETOPO1 global relief model [9]. Red triangles depict hotspots
(with the upper-right point corresponding to Yellowstone), and black points
correspond to age-coded geochemistry.

determine the proximity between the NAVDAT dataset and the

yellowstone hotspot at the “birth” age (i.e. the age at which the

rocks formed) of each rock sample. Rock samples originating

within close proximity of the hotspot are considered to be asso-

ciated with it, allowing the NAVDAT dataset to be partitioned

into two parts, i.e. samples associated with the hotspot, and

the complement. The subsequent geochemical populations are

then studied to investigate chemical compositions, allowing the

nature of the plume-lithosphere to be analysed independently

of the other sources of magmatism in the region.

The GPlates coregistration tool is used to specify the

relationships of interest. The NAVDAT dataset is chosen as the

seed dataset, and the hotspots as the reference. The distance

and name pertaining to the nearest hotspot are then defined,

specified as a relational association type. The geochemistry

metadata of the seed dataset is defined as part of the coregistra-

tion. Simulation parameters are then configured to perform the

coregistration between 60 Ma in the past to present-day, with 1

Ma time intervals. The resultant coregistration results are then

imported into the data-mining tool, with the work-flow design

depicted in Figure 7. In this workflow, the hotspot distances

at the time of birth are computed, as well as the name of the

nearest hotspot. Once these calculations have been performed,

the results are appended to the geochemistry metadata. The

entire dataset is then filtered by the distance to the nearest

hotspot, and samples closest to Yellowstone. The partitioned

geochemistries are then analysed, and the target points plotted

in GPlates.

Fig. 7. Visual workflow for the NAVDAT case study, involving extraction
of time-varying associations, filtering of data close to the Yellowstone plume,
and investigation of the resultant partitioned geochemistries.

Partitioning of the NAVDAT dataset into observations as-

sociated with the hotspot and the complement is depicted in

Figure 8. Varying the proximity threshold, and plotting the

subsequent partitioning spatially (i.e. in the GPlates GIS tool)

aids in selecting a suitable threshold, and allows for visual

inspection of the hotspot trail as it interacted with the litho-

sphere. The partitioning then allows for a follow-up analysis

using the geochemistry metadata. Two typical geochemical

elements studied when considering plume-related magmatism

involve comparing the elements Yb and La. This analysis is

shown in Figure 9 for the two partitioned populations (using

a 260km distance threshold), with some separation of the

populations evident. This can be used for further, more in-

depth analysis. This case study demonstrates how a complex

spatio-temporal analysis involving a moving spatial reference

frame can be decomposed and solved in a relatively simple

fashion using the proposed framework.



Fig. 8. Partitioning of the NAVDAT dataset subsequent to data-mining,
demonstrating the importance of feedback between the data-mining and GIS
components. The top figure depicts the partitioned dataset in pink, with
the remainder in green, having used a 260km distance threshold. A 360
km threshold partitioning is depicted in the lower plot, with the red points
depicting a now larger sphere of influence.

VII. CONCLUSION

This paper presented a spatio-temporal knowledge-

discovery platform design with application to the Earth Sci-

ences, manifested as an extension to the GPlates plate-

reconstruction GIS tool. The importance of incorporating

the many modes of data (which are becoming increasingly

available) across the geosciences leads to the ability to tackle

more complex and pertinent scientific questions. The simulta-

neous assessment of these large and diverse datasets through

space and time poses new challenges, and calls for novel

approaches in interacting with and understanding the data.

In this paper, we discussed these challenges, and how they

led to the development of a corresponding software design

and implementation. The design consists of two primary com-

ponents, namely a coregistration tool for recursively defining

explicit quantitative relationships between datasets in a flexible

fashion, and a data-mining environment for subsequent assess-

ment of the derived datasets using powerful data manipulation

and statistical analysis approaches. The ability to develop

specialised plugins and abstract workflow definition complex-

ity via a visual programming environment are two essential

Fig. 9. Geochemical analysis for the partitioned NAVDAT dataset regarding
the Yb and La elements. Good separation of the populations suggests the
data coregistration has successfully partitioned the lithospheric segments
corresponding to the path of the plume.

aspects incorporated into the design. The overall solution is

demonstrated via a complex spatio-temporal case study. It

is anticipated that this knowledge-discovery environment will

lead to significant scientific advances, and be adopted by a

broad community of users due to it’s flexible, open design.
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