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INTRODUCTION 

  
Conceptual targeting and development of a mechanism by 
which low expenditure greenfields exploration and large-scale 
reconnaissance can occur is a vital component of mineral 
exploration (Hronsky & Groves, 2008).  Additionally, with 
declining market value of some commodities coupled with 
depletion of easy-to-find and to-extract “brownfield” ore 
bodies, there is a rising need to uncover new prospective 
areas.  As a consequence of the recent increases in 
computational power and resolution of geophysical datasets, 
we present a new methodology by which low expenditure, 
regional to district scale exploration can be carried out.  We 
complete this by using machine learning algorithms (MLAs) 

to analyse and create classification schemes using six 
geophysical datasets [gravity, magnetics, topography, 
radiometric signal (K, Th, U)] and the known locations of our 
targeted commodity (iron ore), providing both new conceptual 
targeting models and also new knowledge discovery 
pathways.  By using MLAs we minimise human bias and are 
able to carry out the analysis of large amounts of data with a 
number of different variables in order to predict the location of 
a targeted commodity. The method also lends itself to 
autonomous continuous improvement as better quality data 
becomes available. 
 
Iron Ore 
 
Iron ore is of particular importance to Australia.  Nationally, it 
is our largest mineral export and globally, Australia is the 
largest producer, and, at best estimate, possesses the greatest 
natural resources of iron ore in the world (Britt et al., 2013).  
Production in Australia jumped from 12 Mt in 2004 to 52 Mt 
in 2012, but has tapered off since then.  Australian iron ore is 
found predominantly throughout the Hamersley Basin in the 
Pilbara Craton in north-west Western Australia, though there 
are a number of smaller deposits through the Yilgarn Craton, 
whose importance to iron ore exploration and production has 
only recently been acknowledged (e.g. Duuring & Hagemann, 
2013). 
 
Though iron ore is one of the most significant economic 
commodities in Australia, there is still a degree of uncertainty 
about its formation and, particularly, its enrichment, primarily 
due to the age since deposition and the number of processes 
that deposits undergo that result in enrichment up to ~60 wt % 
iron.  Broadly speaking, iron deposits can be categorised based 
on their original depositional environment as either Superior-
type or Algoma-type (Gross, 1980).  Though this classification 
predominantly relates to North American iron ore deposits, it 
has some use in providing a general classification scheme for 
Australian deposits as well.  Typically, the deposits 
throughout the Hamersley Basin tend to have somewhat 
similar characteristics to the Superior-type, while the Yilgarn 
Craton hosts deposits more similar to Algoma-type (Huston & 
Logan, 2004). 
 
Machine Learning 
 
Machine learning algorithms (MLAs) are computational 
methodologies used for an array of problems such as the 
automation of complex processes (e.g. robotics), classification 
of classes with a degree of variance (e.g. spam filters) or 
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High resolution, large-scale geophysical data have 
recently become readily and freely available for the 
majority of the Australian continent; yet there have been 
few efforts to create a synthesis of these datasets for 
mineral exploration.  Considering the rising cost of 
finding new deposits and the recent economic downturn, 
there is a focus on using low expenditure, large-scale 
explorative techniques to assist in finding deposits.  
Using sophisticated machine learning algorithms coupled 
with increases in computational power, we present a 
methodology that tests and trains a classifier using six 
geophysical datasets in conjunction with 37 iron ore 
locations in the Pilbara Craton that accurately predicts the 
locations of iron ore deposits throughout the Yilgarn 
Craton.  Our selected classifier uses principal component 
analysis and mixture of Gaussian classification with 
reject option, and it successfully identifies 88% of iron 
ore locations.  We use cross-validation (10 fold, 70% 
testing 30% training) to ensure the generalisation of our 
classifier.  We apply our classifier to the Yilgarn Craton, 
an area not used for the training and testing phase, and 
compare the predictive confidence map to previously 
published locations of iron ore occurrences.  We find that 
our classifier correctly locates key known Yilgarn iron 
ore deposits, in addition to highlighting other areas that 
could potentially be prospective for iron ore. 
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recognition of complex patterns within large amounts of data 
for predictive purposes (e.g. tumour classification or buyer 
interests) (Alpaydin, 2010).  Fundamentally, they are based on 
the premise that given a task, computers should show 
improvement in set criteria over experience and that they 
should be able to derive solutions to problems where 
conventional approaches do not necessarily provide an answer 
(Duda, Hart, & Stork, 2000).  This paradigm of “learning from 
representative examples” has had a tremendous impact across 
science and industry. MLAs can be grouped into two distinct 
categories, supervised learning, where labels are provided 
such that the computer has a set or series of known positive 
and/or negative examples (or data models), and unsupervised 
learning where no labels are provided. 
 
Some previous work has been carried out using different 
MLAs for minerals exploration, though in Australia this has 
been restricted to gold exploration in the Yilgarn Craton where 
features such as stress mapping, shape analysis and 
aeromagnetic data were used to help predict the location of 
gold deposits (e.g. Brown et al. 2000; Groves et al. 2000; 
Holden et al. 2008; Holden et al. 2012).  Similarly, data 
mining, which relies heavily upon machine learning, has also 
been used to determine spatial and temporal correlations 
between deposits and their geological environment to assist in 
defining an exploration model (e.g. Carranza 2011; Cracknell 
et al. 2013; Merdith et al. 2013; Landgrebe et al. 2013) 
 
Our Approach 
 
We take a holistic approach to iron ore exploration, using a 
combination of features extracted from key geophysical 
datasets coupled with a multivariate methodology using 
supervised MLAs.  Our selected classifier, a mixture of 
Gaussian with reject-option classifier, is trained on iron ore 
locations in the Pilbara, but correctly predicts the location of 
key iron deposits throughout the Yilgarn Craton.  Finally, we 
apply our algorithm to a Canadian iron province to determine 
its appropriateness for global classification schemes. We 
emphasise the importance of joint-assessment of input 
features/measurements due to correlations that typically occur 
between data sets such as magnetic and gravity data. 
 

METHOD AND RESULTS 
 
The methodology involves utilising available data to 
experiment with and train a classification chain. This chain 
comprises pre-processing (with considerations with respect to 
data preparation and acquisition), feature-
extraction/dimensionality reduction (to cope with the curse of 
dimensionality, and to decorrelate), and classification. The 
methodology focuses on the various chain component choices 
and parameter tuning, called “training”. The output of training 
is a trained classifier chain, i.e. a chosen classification chain 
with all parameters “tuned”. The trained classification chain 
can be applied to new unseen data, and predictive maps 
produced accordingly. 
 
Pre-processing 
 
The geophysical datasets were acquired from Geoscience 
Australia (Table 1) and were used in conjunction with 37 
occurrences of iron ore that were extracted from the OZMIN 
Mineral Deposits Database (Ewers, Evans, Hazell, & Kilgour, 
2002). A set of random locations were also used for training 
purposes; 1000 locations were generated originally, though 
this was reduced to 590 due to incomplete data in some 

locations.  Each sample location had two features extracted 
from each of the datasets; the mean, calculated from a 
aggregate of points within a 1 km radius from the sample 
location, and the contrast ratio (80th percentile pixel divided by 
20th percentile pixel), calculated from a 4 km radius around 
each location.  The second feature is useful to highlight 
peaks/anomalies/changes within a local region. The features 
pertaining to each sample were stored in a 12-dimensional 
feature vector i.e. 2 features for 6 geophysical datasets. 
 
Dataset Reference 
Bouguer Gravity (Bacchin et al. 2008) 
Magnetic Anomaly (Milligan et al. 2010) 
Topography (Hutchinson et al. 2006) 
Radiometric – Potassium (Minty et al. 2010) 
Radiometric – Thorium (Minty et al. 2010) 
Radiometric - Uranium (Minty et al. 2010) 
Table 1 List of geophysical datasets used with their 
reference.  All datasets were acquired freely from 
Geoscience Australia. 
 
Classification 
 
Principal component analysis (PCA) was used to reduce the 
dimensionality from 12- to 4-dimensions in order to cope with 
redundant correlated data and reduce dimensionality while 
maximising variability within the projected lower dimensional 
data (Jolliffe, 2002). Other dimensionality reduction 
algorithms such as Fisher data projection did not work as well. 
Our selected classifier, a mixture of Gaussians classifier with 
reject-option to protect that target classification region from 
unseen (in training) data (Tax, 2014) employed two Gaussians 
to describe the target class, and two to describe the outlier 
class. The entire classification chain was trained and tested via 
a randomised hold-out procedure (10 folds, 70% training, 30% 
testing) in order to validate and ensure that our classification 
model was robust.  The mixture of Gaussians algorithm was 
selected as it could distinguish between a target and outlier 
class, and also protect the target class from unknown outlier 
classes during the training and testing steps (see Landgrebe et 
al. 2006).  Once the algorithm was built it was applied to the 
target area, the Yilgarn Craton, for prediction of iron ore 
locations.  Finally, the probability of iron ore occurring at each 
pixel was used to generate a predictive confidence map 
indicating the probability of iron ore occurring (Figure 1).  
The entire computation involved analysis of ~1.1 million data 
points and takes roughly 12 hours to complete on a personal 
laptop. 
 
Results 
 
The output of our classification algorithm detects a select 
number of areas throughout the Yilgarn Craton as being 
prospective for iron ore deposits (Figure 1).  Comparison of 
our map with a published map of iron ore occurrences within 
the Yilgarn Craton (Cooper, 2013) shows remarkable affinity 
for established iron ore locations.  Key areas that are picked 
up include Extension Hill and Karara, Tallering Peak and 
Windarling, Mt Jackson and Deception (Figure 1).  
Importantly, our classifier is sensitive to varying mineral 
types, such that it detects both magnetite and supergene 
enriched hematite-goethite deposits. 
 

CONCLUSIONS 
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We presented a generic, low expenditure methodology for 
minerals exploration.  We use iron ore as a case study, 
achieving 88% classification and successfully identifying key 
iron ore areas in the Yilgarn Craton, an area not used for 
training or testing.  By varying the targeted mineral and 
datasets used, it is expected that this methodology can be 
customised and applied to any number of mineral 
commodities.  Furthermore, with access to more powerful 
computers it is expected that larger continental scale analyses 
can be performed. 
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Figure 1: Predictive confidence map for the Yilgarn Craton depicting the probability of iron ore occurrence.  The open 
circles indicate key mining locations throughout the area. A, Dead Goat Hill, Taylor Range, Mt Gould; B, Mt Fraser, Jabiru, 
Valley Bore; C, Twin Pearks; D, Weld Range-Madoonga; E, Deception, Windarling, Mt Jackson; F, Coates (Fe and V-Ti), 
Crows Nest Hill, Wongamine North. 
 


