
Creating an Animation from GPlates Output

Using FFmpeg

Authors: Christopher Alfonso, Sabin Zahirovic

EarthByte Research Group, School of Geosciences, University of Sydney,

Australia

Creating an Animation from GPlates Output Using FFmpeg

Aim

Background

Exercise 1 – Exporting a series of reconstructions and including a

timestamp in GPlates

Exercise 2 – Creating a time-lapse animation from the exported

reconstructions

Installing and using Avanti and FFmpeg on Windows

Installing and using FFmpeg on Mac/Linux

Aim

This tutorial is designed to (1) teach users how to export screenshots of

plate reconstructions as discrete image files and then turn these image files

into an animated video file, and (2) assist users with the installation of the

software required to do so.

Background

GPlates allows you to visualise plate reconstructions and raster data through

geological time. This data can then be exported and converted to file

formats, including images and videos, which can be viewed independently of

GPlates and can be useful for creating figures and presentations.

With Exercise 1, we will begin by exporting a series of images from GPlates,

recapping and building upon concepts covered in the previous tutorial

(Tutorial 6.2: Exporting Plate Reconstructions as Image Files). We will then

move on to cover the process of converting these images into an animated

video file in Exercise 2.

Relevant Files

This exercise will use the GPlates sample data included with the GPlates

installation – specifically, the “Data Bundle for Novices” GPlates project file,

which can be found at the following location within the GPlates installation

directory:

SampleData\DataBundleForNovices\DataBundleForNovices.gproj

Exercise 1 – Exporting a series of reconstructions and

including a timestamp in GPlates

For this exercise, we will load the GPlates “Data Bundle for Novices” project

file, along with its accompanying feature collection files, using “File” →

“Open Project…”:

https://docs.google.com/document/d/1V9E_BoUCahyFos9M-CWzrqOFAi0pTpE-wOFHqL5KRwU/pub

To simplify things, we can turn off all of the layers except for the resolved

topologies, coastlines, and topography by clicking the eyes next to their

names in the “Layers” window (Figure 2).

For our example, we will focus on India as it breaks away from Gondwana

from 131 – 122 Ma. Use the time slider to reconstruct back to 131 Ma and

drag the globe to the desired location. We can also recolour the coastlines

silver using the Manage Colouring tool under the Features menu option

(Figure 3).

We now need to add a timestamp to the GPlates main window which will be

captured by the ‘Export’ tool. To do this, select ‘Configure Text Overlay…’

under the View tab (Figure 4). This will open the ‘Configure Text Overlay’

window.

Check the ‘Enable Text Overlay’ box to un-grey the interface. The default

text to be overlaid is ‘%f Ma’ which represents the current reconstruction

time. Leave this as it is.

Other properties which can be specified include the number of decimal

places, font, colour, anchor (the position of the text relative to the

reconstruction interface), and horizontal and vertical offsets. It is

recommended that you make the font size large so that the timestamp is

visible from a distance. Once you have finished configuring your text, click

OK (Figure 5).

You will now see a timestamp in the location you have specified on the

GPlates main window (Figure 6). Try adjusting the reconstruction time using

the time slider – you will see that the reconstruction time matches up with

the timestamp that we have just inserted.

Now we will export a series of ten images covering the period 131 – 122 Ma.

With the reconstruction time set to 131 Ma and the view centred on India,

select the option ‘Export…’ under the ‘Reconstruction’ tab (Figure 7). This

will open the ‘Export’ window.

In the Export window (Figure 8), select ‘Export Time Sequence of

Snapshots’. Specify the start and end times of the animation, by setting

‘Animate from:’ to 131 Ma and setting ‘to’ to 122 Ma, with an increment of

1 Myr per frame. If desired, change the location where the images will be

saved by changing the ‘Target directory’.

The next step is to specify what we actually want this snapshot exported as.

To do this, click on ‘Add Export’. This will open the ‘Add Data to Export’

window (Figure 9) where you are able to specify the file type, file name, and

file size of your image.

Since we are going to export images, select ‘Image (screenshot)’ under ‘1.

Choose File to Export’. A list of image file types will appear under ‘2. Choose

Output File Format’. Notice that if you experiment by selecting different data

types, the types of image files available to you will also change. We will

choose to export our images as Joint Photographic Experts Group (.jpg)

files; Portable Network Graphics (.png) files also work well.

Once you select this, the ‘3. Configure Export Options’ section will become

available. Here you can specify the resolution of the image by selecting the

width and height. By default, the width and height are set to the main

GPlates window dimensions. If you wish to reset the width and height to this

default, simply click the yellow arrow next to ‘Use main window

dimensions:’. It is recommended that you tick the box for ‘Constrain aspect

ratio’ in order to preserve the width:height ratio of the original

reconstruction. Keep in mind that this will grey out the Height option, so if

you desire an image with specific dimensions then leave the box unticked.

The final section, ‘4. Specify Output File Names’, currently contains the

default template ‘raster_%0.2fMa’, which needs to be changed. Our image

files need to be named according to the correct formula: each image’s

filename must end with a ‘frame index’, starting at 0 with the first image

and then increasing sequentially. As can be seen in Figure 9, the template

must therefore end with ‘%u’. Using the template ‘image_%u’, our image

files will be named ‘image_00’, ‘image_01’, [...], ‘image_09’.

Once we have specified all of these conditions, we can click ‘OK’. This will

return us to the ‘Export’ window, which will now list the output conditions we

have specified under ‘GPlates will create the following files:’. When we click

‘Export Snapshot’, GPlates will begin exporting the files we have specified,

with its progress indicated by the bar at the bottom of the window; this

process may take a long time if a large number of files are being exported.

Once GPlates has finished exporting all of the files, they can be found in the

target directory we specified earlier.

Exercise 2 – Creating a time-lapse animation from the

exported reconstructions

FFmpeg is a program which can be used to perform many tasks relating to

video files, including creating a video from a series of still images. In this

tutorial, we will use FFmpeg to create an animated video from the series of

still images which we just exported from GPlates. This process differs

depending on the operating system used; the next section is intended for

Windows users, and the following section for Mac/Linux users.

Installing and using Avanti and FFmpeg on Windows

In order to use FFmpeg on Windows, we will utilise a program named Avanti.

Avanti is a graphical user interface (GUI) for FFmpeg and allows a user to

make use of the features of FFmpeg relatively easily, without having to

familiarise themselves with FFmpeg’s command-line interface (CLI).

Installing Avanti and FFmpeg on Windows

Avanti can be downloaded from here (as of the time of writing, the most

recent version is 0.9.2, released 08-04-2015). The downloaded files must be

extracted using 7-Zip, which can be downloaded and installed from here.
The extracted Avanti files can then be placed in any directory.

Avanti also requires FFmpeg, which can be downloaded here. Choose a

recent version and select “Windows 32-bit” and “Static” under the

“Architecture” and “Linking” headings, respectively (even if your machine’s

architecture is 64-bit, Avanti works best with the 32-bit version of FFmpeg).

These downloaded files can then be extracted either using 7-Zip or by

right-clicking and selecting “Extract All…”

Next, navigate to the “bin” directory within the FFmpeg files and locate the

files named “ffmpeg.exe” and “ffplay.exe”. Copy these files to the directory

named “ffmpeg” within the Avanti files extracted earlier.

Avanti can now be launched by running the file named “Avanti-GUI.exe”

within the “Avanti-ffmpeg-GUI-XXX” folder (replace “XXX” with the

http://www.avanti.arrozcru.org/
http://www.7-zip.org/
https://ffmpeg.zeranoe.com/builds/
https://ffmpeg.zeranoe.com/builds/

appropriate Avanti version number). Avanti may take a few moments to

start, as indicated by a message at the bottom of the window: “Please wait

for system ready!”

Additionally, it may sometimes be necessary to run Avanti in ‘Compatibility

Mode’ – this is done by: right-clicking on Avanti-GUI.exe → selecting

“Properties” → selecting the “Compatibility” tab → checking the box marked

“Run this program in compatibility mode for:” → selecting “Windows XP

(Service Pack 3)” from the drop-down menu.

Using Avanti on Windows

Once we have created our series of image files and installed the required

software, we can use Avanti to stitch the images together into an animated

video file. Launch Avanti as described above, in the “Installing Avanti and

FFmpeg on Windows” section of this tutorial.

Once Avanti is open, we must first specify that our input is a sequence of

images, by right-clicking on the text box labelled “Source 1” and selecting

“Image sequence” (Figure 10).

Then, we click on the folder icon next to the box marked “Source 1”, locate

the image files we produced earlier, and double-click on one of them (Figure

11). Avanti should recognise the naming scheme for our files, as can be seen

in Figure 11: “image_%02d.jpg”, where “%02d” indicates a sequence of

two-digit numbers, in this case running from “00” to “09”.

Similarly, we can choose a destination for our video output using the folder

icon next to the box marked “Destination”.

Avanti offers many options for video manipulation, only some of which will

be useful to use. Firstly, we need to make sure that the “Destination Audio

settings” are disabled (Figure 12) — since our input image files have no

audio, neither will our output video file.

Next (Figure 13), we can choose the output video file’s codec (MPEG-4

usually works well) and container (file extension, such as .mp4 or .avi).

If the “Frame size” option (Figure 6) is set to “Source”, the resolution of the

video will be the same as that of the images; if different dimensions are

needed, a different resolution (in pixels, e.g. “600 x 600”) can be entered.

The “Frame rate” setting (Figure 15) is important: this controls how quickly

the images will change in the animated video. It is measured in frames per

second, so that a frame rate of 1 is equivalent to 1 second per image, 2 is

equivalent to 0.5 seconds per image, etc.

The “Bitrate” setting (Figure 16) determines the quality (and therefore the

file size) of the video. If a smaller file size is needed and a high quality is not

crucial, this number can be lowered.

The other available options should mostly be left as “Source” or “Default”. If

a video aspect ratio (width:height ratio) different to that of the input images

is required, this can be changed using the “DAR” option.

Finally, we can click the “Start process” button to begin creating our video

(Figure 17).

Installing and using FFmpeg on Mac/Linux

Installing FFmpeg is significantly less complicated on Mac and Linux than on

Windows, so we will bypass Avanti and install and use FFmpeg directly from

the operating system’s command line instead.

Installing FFmpeg on Mac/Linux

Simply use your preferred package manager to install FFmpeg. For example,

if using Macports, open a Terminal window and enter “sudo port selfupdate”,

followed by “sudo port install ffmpeg”.

Similarly, on Ubuntu, open a Terminal window and enter “sudo apt update”,

followed by “sudo apt install ffmpeg”.

Using FFmpeg on Mac/Linux

Once FFmpeg has been installed, use the Terminal window’s “cd” command

to navigate to the directory containing the image files exported earlier.

FFmpeg is a powerful tool which provides many options (see the

documentation here). Rather than familiarising yourself with FFmpeg’s

extensive syntax, you can simply copy and paste the following line,

modifying it to your specifications:

ffmpeg -framerate 2 -pattern_type sequence -i 'image_%02d.jpg' -vf

scale=800:-1 -vcodec mpeg4 -b 5000k -r 2 output.mp4

The different elements of the above command are as follows:

-framerate Sets the framerate of the output

video file (in frames per second);

“-framerate 2” is 2 frames per

second, or 0.5 seconds per image

-pattern_type “-pattern_type sequence” specifies

that the input is a sequence of

image files

-i Specifies the input file(s);

“image_%02d.jpg” indicates a series

of file names beginning with

“image_” and followed by a

two-digit number beginning at “00”

-vf “-vf scale=800:-1” is optional, and

resizes the output video to a width

of 800 pixels and a corresponding

height (keeping the same aspect

ratio (width:height))

-vcodec Specifies the codec of the output

video file; “-vcodec mpeg4”

indicates that the output will be

encoded using MPEG-4

-b Specifies the bitrate of the output

video file; “-b 5000k” indicates a

bitrate of 5000 kbit/s. Increase for

higher quality but larger file sizes

-r Should be the same as -framerate;

otherwise, frames might be dropped

from the output video file

https://ffmpeg.org/ffmpeg.html

output.mp4 Specifies the name of the output

video file. For a different file

extension, change “.mp4” to “.avi”,

“.mov”, etc.

