Data Processing and Plotting Using Generic Mapping Tools

Generic Mapping Tools Graphics

Maria Seton and Kara Matthews EarthByte Group School of Geosciences, University of Sydney

Course Information

- Course will consist of lectures with practical exercises imbedded
- Sessions:
 - 🔮 10am-12:30pm Maria

Assessment

- Assessment is a final practical assignment to be handed in by 5pm Friday 12th April, 2013 via email or Large File Transfer
- **Any questions**.
 - Maria (Rm 400) email maria.seton@sydney.edu.au
 - Kara (Rm 414) email kara.matthews@sydney.edu.au
 - Course Notes: ftp.earthbyte.org/earthbyte/ Teaching/SUCOGG_GMT_Course

Lecture Outline

- What is GMT?
- What can it do?
- Examples of GMT output
- Basic unix knowledge that you need in order to use GMT
- GMT default settings
- GMT file formats

What is GMT?

Stands for Generic Mapping Tools

GMT does data processing and visualisation

- It is open source, platform independent and free to download and use
- GMT is jointly developed by Paul Wessel (UH) and Walter H. F. Smith (NOAA)
- \bigcirc It is very popular, used by ~15,000 people

GMT Platform Scenarios

Why is GMT popular?

- Easy to install on all platforms
- Architecture-independent file formats
- Quality PostScript graphics
- Extensible
- Developers are scientists and users

What is GMT?

- GMT consists of 60+ individual programs
- Written in POSIX C
- GMT has a command line interface
- GMT consists of small modules which focus on limited tasks
- But modules can be combined in many ways to achieve complex tasks
- There is a seamless integration with UNIX OS and tools

What Can GMT Do?

- GMT can process and manipulate data
- GMT can generate a postscript plot of your data
- However, remember that GMT is not a GIS or image processing package

GMT can

Filter time-series and 2D data

Distance (units of filter width)

Do trend fitting of data

GMT can

⊌ Grid xyz data

Age of Oceanic Lithosphere [m.y.]

Cut, paste and blend grids

GMT can

- Resample a data set
- Do arbitrary math operations
- Calculate directional derivatives
- ⊌ Grid masking
- Data projections
- Optimal triangulations
- Subset extraction

GMT can

- Plot x-y diagrams of lines, polygons and symbols
- Plot text and labels

Plot rectangular or polar histograms

Two types of histograms

GMT can

Plot basemaps with coastlines, rivers and borders

Location map AFR.GindiBasin.

CATE 2005 Apr 29 16:24.38 Parts Boundaries from PROBED (Parter Bird) Dataset

GMT can

Plot contour maps

Plot perspectives views with illumination

HAWAIIAN RIDGE

GMT can

Plot vectors and vector fields

$$z(x,y) = x * exp(-x^2 - y^2)$$

All GMT tools work together

m.s.1.6

ostex

pscoast

14.2 1.43.7

cat

filter1d

psxy

7.2 ,0,15.7

surface

grdcontour

Layer 1 (Red): create ascii file, Filter ascii data and plot

> Layer 2 (Green): Interpolate and grid filtered data and make a contoured Map

> > Layer 3 (Blue): Plot

Well B5 coastlines on top of map

> Layer 4 (Pink): Plot labels on top of map

The Learning Curve

Unix and shell Environment

- ⊌ Login
- Using stdin, stdout, and stderr
- I/O redirection
- 🤪 Pipes
- ⊌ Wild cards
- File permissions
- Command history
- 🤪 UNIX tools
- ⊌ UNIX man pages

Class Exercise - Login

- USyd students use your unikey and password
- Son-USyd students get login from me
- Use your unikey and password to login to a computer (running windows)
- Go to Start Programs Putty Putty
- Type in 129.78.236.17 under hostname, then connect
- Username is gmt-user, password weloveGMT
- Have an active linux terminal

Input/Output

UNIX initialises 3 file handles:

- Stdin: Standard input [keyboard]
- Stdout: Standard output [screen]
- Stderr: Standard error [screen]
- These can all be redirected so that read (or write) instead takes place from (or to):
 - files on the disk
 - a process (e.g., another UNIX program)

Redirection examples

GMTprogram inputfile > outputfile

GMTprogram inputfile >> outputfile

Solution Notes:

- The last example appends to an existing file
- If no input file is given the program reads stdin

Piping and other plumbing

- Pipes are used to connect the output of one program to the input of another.
 - program1 | program2 < results.dat
 </pre>

 - Gat inputfile | program4 | lp

Notes:

- 1. Ip is the printing program
- 2. cat sends contents of file to stdout

UNIX Wild cards

Wild cards allow many files to be addressed one by one at the same time

Sour kinds of UNIX wild cards exist:

*	Matches anything (even nothing)
?	Matches any single character
[list]	Matches any one character in list
[range]	Matches any one character in range

Wild card examples

- Print all files beginning with "data_" and ending in ".d":
 - Ip data_*.d
- Process files beginning with "line__" followed by any single character and ending in ".d".
 - crunchjob line_?.d >> final.d

UNIX File Permissions

- File permissions may be any combination of read (r), write (w), and execute (x)
- This combination may be set differently for the user (u), the group (g), or others (o)
- To see a file's permission, use "Is -I":

 - The permission is printed [d]rwxrwxrwx
 - Image: means a permission is not given
 - a leading d indicates a directory

Output may look like this:

-rw-r--r-- 1 marias marias 15597 Aug 26 12:15 myfile

Executable k shell scripts

- A script is a file with one or more ksh or UNIX commands in it
- Scripts must start with magic line:

🔮 #!/bin/ksh

- Add comments by starting lines with #
 # This script makes Fig 7 in Thesis
- Save script to a filename (e.g., fig7.sh)
- Make executable
 - 🔮 chmod +x fig7.sh

Command History

- The command "history n" will show the last n commands you have issued
- Solution To repeat a previous command, try:
 - In, where n is the command number
 - (will run command # 203 once more)
 - Iprefix, where prefix is the beginning of a command string:
 - 🔮 !progra
 - will repeat the previous command

UNIX and Windows Tools

- ferminal (for entering commands)
 - 🝚 Terminal, xterm
- editor (for writing scripts)
 - gedit, vi, emacs, textmate we will use notepad on windows
- PostScript previewer
 - Solution (or gv), preview we will use Acrobat
- 🤪 UNIX utilities
 - ksh, awk, grep, sed, wc, head, tail, sort

Useful UNIX commands

- pwd (print working directory)
- Second Strate (Changes directory to dir)
- Model in the makes the directory dir
- where the given files
 where the given
- rmdir dir (removes an empty directory)
- cp a b (copies file a to file b)
- where we wanted to new (moves old to new)

Class Exercise - Create a directory

- Go to your linux terminal
- Type pwd this prints your working directory
- Sow we want to create a directory called yourname
- Type mkdir yourname
- View the contents of that directory by typing cd yourname
 pwd

Class Exercise - Create a directory

Oo the same to create a directory called GMT_Course

GMT General Features

- Default settings
- Measurement units
- Standardized command line switches
- Table data formats
- Grid file formats
- Color palette tables
- Pens and Fills
- Character escape sequences

GMT Default parameters

- More than 100 parameters
- Stored in .gmtdefaults4 files (ASCII)
- Affect many aspects of GMT operations
- GMT searchers for .gmtdefaults4 in
 - The current directory
 - The home directory
 - Defaults to the GMT install settings

Class Exercise – Make a .gmtdefaults4 file

- In the GMT_Course directory, type
 gmtdefaults -D > .gmtdefaults4
- So it will not display if you type ls
 So it will not display if you type ls
- Type Is -all
- Type vi .gmtdefaults4 to see what the file looks like
- Type :q to close the file

GMT Defaults Parameters (1)

GMT Defaults Parameters (2)

GMT Defaults Parameters (3)

GMT Measurement Units

Can accept cm, inch, meter, or point

- Section Append unit abbreviation to value.
 - 🤪 4c, 3.5i, 18p
- Set MEASURE_UNIT to desired unit
 - Walues without trailing unit imply the default unit

Common Command Line Options

OPTION	MEANING				
—В	Define annotation-, tick-, and grid-intervals, axes labels, and title				
-H	Indicate that ASCII tables have header record(s)				
_J	Sets the current map projection or coordinate transformation				
-К	Allows more plot code to be appended to current plot				
-0	Overlay more plot code on current plot				
- P	Select Portrait orientation [Default is landscape]				
–R	Define the world coordinates domain				
-U	Plot time-stamp on the plot				
- V	Run program in verbose mode				
-X	Set x-coordinate for plot origin				
-Y	Set y-coordinate for plot origin				
-b	Selects binary input or output				
-с	Specify number of plot copies				
-f	Specify data format on a per column basis				
-:	Input geographic data are (lat, lon) rather than (lon, lat)				

GMT file formats

Data tables

- Scii (slow but human readable)
 - Single segment (default)
 - Multi-segment with internal headers
 - May have header records
 - fields can be separated by tabs, space or commas
- Binary (faster for larger files)
 - Single segment (default)
 - Multi-segment (internal headers)

Example: ASCII data table with 1 line header record

> time (Ma), conv. rate (mm/yr), angle, abs.rate (mm/yr), abs.rate.normal (mm/							
yr), strike	2.5	37.8	-46.6	34.4	31.1893 9		
7.5	41.6	-49.0	32	35.2788	9		
12.5	52.4	-53.2	28.8	45.9185	8		
17.5	53.4	-52.5	29.5	46.477	8		
22.5	51	-60.6	21.4	47.4838	8		
27.5	61.2	-54.2	27.8	54.1364	8		
30	nan	90.0	9	nan	9		
17.5	51.8	-54.5	26.5	46.3576	9		
7.5	41.6	-49.0	34	34.488	7		
12.5	52.4	-53.2	29.8	45.4709	7		
17.5	53.4	-52.5	30.5	46.011	7		
22.5	51	-60.6	22.4	47.1518	7		
27.5	61.2	-54.2	25.8	55.0995	10		
30	nan	90.0	-0	nan			
17.5	51.8	-54.5	-0	51.8			
7.5	41.6	-49.0	-0	41.6			

GMT file formats

Gridded data sets, z(x,y)

- Sectangular domain with equidistant grid spacing Δx and Δy
- x and y-coordinates implied and not stored
- Contain comments and header info
- Gridline- or pixel-registration possible
- Architecture-independent netCDF format
- Other native binary formats available
- Question formats can be accommodated

Grid file registrations

- Gridline registration has 1 row/column more than pixel registration
- Gridline registration has nodes at gridline intersections whereas pixel registration has nodes centered on the grid boxes

GMT file formats

Colour palette tables

- Searchead ASCII table with optional comments
- Commonly use the r/g/b system
- Each record defines colour as a function of z between slice z₀ to z₁
- Any number of slices allowed; z must be monotonically increasing with no gaps
- Colour may be constant or change linearly from z₀ to z₁

How does color work?

- Computer monitors mix <u>light</u> to make colors
 - RGB is always end-product
- Printers mix paint to make colors
 - Black (K) is used as 4th paint
 - CMY are reduced given the amount of K present

Specifying Color

Second Color is specified in one of four ways:

- Color names: Give standard X11 names such as red, green, violet, etc.
- RGB system: Give r/g/b where each integer indicates intensity of light from 0 to 255. If r = g = b we have gray and only r needs to be specified.
- HSV system: Give h-s-v for hue, saturation, and value.
- CMYK system: Give c/m/y/k values, each in the 0-100% range.

Colour palette table

cpt file created by makecpt on Fri Mar 9 17:26:19 2001
No input V1.0 shade table was given; a gray scale was made.

Contours were made using a mid-value of -3500 and a contour interval of 1000

1	1
Ŧ	Ŧ

F

255

255

-6500	15	15	15	-5500	15	15	15
-5500	47	47	47	-4500	47	47	47
-4500	79	79	79	-3500	79	79	79
-3500	111	111	111	-2500	111	111	111
-2500	143	143	143	-1500	143	143	143
-1500	175	175	175	-500	175	175	175
-500	207	207	207	500	207	207	207
В	0	0	0				

255