Plotting Lines and Symbols

Q psxy can be used to plot;

- lines

Q closed polygons
Q standard geometric symbols (circle, square, etc.)

Q Custom designed symbols
Q Polygons and most symbols may be
Q filled with paint of chosen colour
Q filled with B/W or colour pattern

GMT Symbols and Patterns

9 Standard Geometrical shapes

GMT Symbols and Patterns

9 User Defined Symbols

GMT Symbols and Patterns

Q Faults, Fronts and other demarcations

GMT Symbols and Patterns

© Pattern Fill

Common psxy options

Option	Purpose
$\mathbf{- A}$	Suppress great circle line interpolation
$\mathbf{- C}$ cpt	Set symbol color from z-values and cpt file
$\mathbf{- E}[\mathbf{x} \mid \mathbf{X}][\mathbf{y} \mid \mathbf{Y}][\mathrm{cap}][/ \mathrm{pen}]$	Draw error bars with specified attributes
$\mathbf{- G}$ fill	Set color for symbol or fill for polygons
$\mathbf{- \mathbf { L }}$	Explicitly close polygons
$\mathbf{- M}[$ flag $]$	Multiple segment file; headers start with flag
$\mathbf{- N}$	Do Not clip symbols at map borders
$\mathbf{- S}[$ symbol $][$ size $]$	Selects one of several symbol
$\mathbf{- W}$ pen	Set pen for line or symbol outline

Controlling psxy

Q Lines:

- -Wpen, optionally -L for closure
- Polygons:

Q -Gfill (implies -L)

- Optionally -Wpen for polygon outline

Q Symbols:
Q - Sisymbolı[size]
Q If not specified, symbol and/or size must be given in the data file(s)

- Select -Gfill and/or-Wpen for outline

9 Optionally add error bars with $-\mathbf{E}[x \mid X][y \mid Y]$

psxy -S: Available symbols

Code	Symbol	Code	Symbol	Code	Symbol
-	x-dash (-)	\mathbf{g}	octagon	\mathbf{r}	rectangle
\mathbf{a}	star	\mathbf{h}	hexagon	\mathbf{s}	square
\mathbf{b}	bar	\mathbf{i}	invtriangle	\mathbf{t}	triangle
\mathbf{c}	circle	\mathbf{k}	kustom	\mathbf{v}	vector
\mathbf{d}	diamond	\mathbf{I}	letter	\mathbf{w}	wedge
\mathbf{e}	ellipse	\mathbf{n}	pentagon	\mathbf{x}	cross (x)
\mathbf{f}	front	\mathbf{p}	point	\mathbf{y}	y-dash (I)

($a, c, d, g, h, i, n, s, t, x$) fits inside circle of given diameter
(A, C, D, G, H, I, N, S, T, X) has area equal to circle of given diameter

Specifying colours

Q Color names: Give standard X11 names such as red, green, violet, pink, lemonchiffon.

Q RGB system: Give r/g/b where each integer indicates intensity of light from 0 to 255. If $r=g=b$ we have gray and only r needs to be specified.

Q E.g. red $=255 / 000 / 000$
Q E.g. yellow $=255 / 255 / 000$
Q E.g. pink $=200 / 000 / 080$

psxy exercise

Q Copy over the file called data.txt
QUse psxy to plot data as transparent circles of size 0.6 cm .
psxy data.txt -R0/6/0/6 -JX12 -B2g1 -Sc0.6-P > ex11.ps ps2raster ex11.ps
Q Now try using the -G option to fill the circles (e.g. -Ggreen or -G0/255/0)

Q psxy data.txt -R0/6/0/6 -Jx12 -B2g1 -Sc0.6 -P -Ggreen > ex11.ps
Q Now give them back an outline (e.g. -Wthin)
Q psxy data.txt -R0/6/0/6 -JX12 -B2g1 -Sc0.6 -P -Ggreen Whthin > ex11.ps

Exercise: Use psxy to plot point data

Q Copy over the file testpoints.txt
Q Have a look at it using Notepad++
Q Use minmax to determine the range of the data (to fill the? in the psxy command)
Q Now use the following GMT command and options to plot this data.

Q minmaxtestpoints.txt
© psxy testpoints.txt -JX12/6 -R0/?/0/? -Ba10g5:"Seafloor Age (Ma)":/ a2g2:"Roughness (mGal)":SW -Sc0.2 > testpoints_1.ps

Q To see the figure you made type
Q ps2raster testpoints_1.ps

Q -JX12/6 - We are plotting non-geographic data (i.e. these are not latitudes and longitudes) so we need to use -JX. $12 / 6$ sets the width $=12 \mathrm{~cm}$, and height $=6 \mathrm{~cm}$.

Q -R0/100/0/12 - Sets the region of the plot from 0 to 100 for the x -axis and 0 to 12 for the y-axis
Q -Ba10g5:"Seafloor Age (Ma)":/a2g2:"Roughness (mGal)":SW - For the x-axis, sets the annotation interval to 10 and grid interval to 5 . For the y-axis, sets the annotation and grid interval to 2 . WS specifies that only the west and south axes of the plot will be plotted and labelled.

Q - Sc0.2c - This option tells GMT how to treat the data points that are in the file testpoints.txt. ' c ' specifies a circle, and 0.2 c specifies the size of the circles.

Exercise: Use psxy to plot point data cont...

Q Plot as solid purple stars
Q Give your stars a thick (1.5p), dashed green outline (-W.....)
Q Plot as line data (no symbols)
9 Plot as filled polygon using your favorite color (use -L, -W and -G but no -S)
Q Plot solid line with inverted triangles (0.6 cm) (hint: look at -Sf)

psxy data file format

General format with [optional] columns:
$\mathrm{x} y[z][$ size $]\left[\sigma_{x}\right]\left[\sigma_{y}\right]$ [symbol]
Q Supply size if you want individual sizes*
Q Supply error info for x and/or y :
Q -Ex needs σ_{x} (plain error bar)
9 -EX needs $X_{\text {min }} x_{25 \%} \mathrm{X}_{75 \%} \mathrm{X}_{\text {max }}$ (box-whisker)
Q Supply z and a cpt file ($-\mathbf{C}$) to assign colors based on z
*size is direction length for vectors, direction major- minor-axis for ellipses, and width height for rectangles
psxy exercise - Specifying errors etc in the input file

Q 1) Use the file testpoints_sizes.txt to plot different symbols for different points. (Hint: remove size from the command line e.g. -Sa rather than -Sa0.5)

Q 4) Use the file testpoints_errors.txt and the -E option with to plot error bars $\|$ to the y-axis

Plotting basic maps with pscoast

Q Takes -R, -J, and -B for basic setup
Q One or more additional options required:

Option	Purpose
-A	Exclude small features or those of high hierarchical levels
-D	Select data resolution (full, high, intermediate, low, crude)
-G	Color of dry areas [no paint]
$\mathbf{- I}$	Draw rivers (append category and pen)
-L	Plot map scale
$-\mathbf{N}$	Draw political boundaries (append category and pen)
-S	Color of wet areas [no paint]
$-\mathbf{W}$	Draw coastline (append pen)

The 5 Coastline Resolutions

Q full, high, intermediate, low [Default], crude

Q About 20% reduction in detail per level

Exercise: pscoast

Make a Mercator map of Australia. Plot green land with blue oceans.

Q Try another coastline resolution
Q Draw the coastline with a white pen
9 Change annotation appearance with PLOT_DEGREE_FORMAT
© pscoast-JM12-R90/150/-40/0 -Ggreen -Sblue -P -Ba10f10 -Df > Australia.ps
Q --PLOT_DEGREE_FORMAT=dddF > Australia.ps
Q --MEASURE_UNIT=cm

UTM Projection

Q Conformal and Cylindrical projection
Q Syntax: -JUzone/width or -Juzone/scale
Q Height calculated automatically
Q Zone is a 6° wide longitude strip starting at $180^{\circ} \mathrm{W}$
Q E.g., zone 1 is $180^{\circ} \mathrm{W}$ to $174^{\circ} \mathrm{W}$, centered on $177^{\circ} \mathrm{W}$
Q zone is usually provided, if not, compute from the central meridian as

$$
\text { zone }=\frac{(\text { lon }-180+360) \% 360}{6}+1
$$

Q Some special zones are different (see map)
Q scale can be
9 plot units per degree or 1:xxxxxxx

UTM Zones A-B,1-60,Y-Z

UTM Zones - Australia

Exercise: UTM Afghanistan

© Task: Make a UTM map of Afghanistan, using UTM zone 40. Plot shaded land with political borders.

Q Use lower left and upper right setup instead of $w / e / s / n$

Exercise: UTM Afghanistan

Q pscoast-R50E/20N/80E/40Nr -JU40/10 -B5g5 -G200 -N1/1p,red -P >afghan.ps

Conical Projections

Q Cone defined by two standard parallels
9 Cone unrolled to yield flat sheet
© Conformal, equal area, or equal distance

Conical Map Projections

Q Syntax:

- -Jdlon ${ }_{0} /$ lat $_{0} /$ slat $_{1} /$ slat $_{2} /$ width
- -J Slon $_{0} / \mathrm{lat}_{0} /$ slat $_{1} / \mathrm{slat}_{2} /$ scale

Q scale can be
9 plot units per degree
(1:xxxxx
Q Conical Map Projections include;
Q B (or b): Albers Equal-Area
Q D (or d): Equidistant
Q L (or a): Lambert Conformal

Exercise: Conical Map of the US

Q Make a map of continental US, with 33 N and 45 N as parallels. Paint land, and draw national and state borders
© pscoast -R230/300/25/50 -JB265/35/33/45/10B10g10 -Gdarkbrown -Lf295/28/33/500k -P > conical_us.ps

Exercise: Conical Map of the US

Q Make a map of continental US, with 33 N and 45 N as parallels. Paint land, and draw national and state borders
© Draw grid crosses every 10 degrees
Q Use rectangular region
9 Add map scale with -L
Q Now plot 3 maps which will show each of the 3 conic projections in GMT, applied to the continental US (complete with political borders and scale)

Azimuthal projections

Q Plane is tangent to point of origin
Q Coordinates projected onto plane
Q Conformal, equal area, equal distance, other

Azimuthal Map Projections

Q Syntax:

- -JDlon ${ }_{0} /$ lat $_{0} /$ width
- -Jdlon 0_{0} /lat ${ }_{0}$ /scale
- scale can be

Q plot units per degree

- $1: x \times x \times x$
- lat $_{\mathrm{s}} / 1: \mathrm{xxxxx}$

Q radius/lat
Q Azimuthal Map Projections include;

- A (or a): Lambert Equal-Area
- E(ore): Equidistant

Q G (or g): Orthographic

- S (or s): Stereographic Conformal
- \mathbf{F} (or f): Gnomonic (takes lat ${ }_{h} /$ scale)

Schmidt and Wulff

Q $\operatorname{lon}_{0}=$ lat $_{0}=0$ gives stereo-nets
Q Schmidt is equal-area (- JA)
Q Wulff is equal-angle ($-\mathbf{J S}$)

Exercise: Azimuthal Greenland -

 Equal-Area and Orthographic9 Task: Plot two maps on separate pages:
Q 1) Showing Baffin Island and Greenland using an equal-area azimuthal projection with rectangular borders
Q 2) Showing global setting of Greenland and Baffin Island using an orthographic view

Answers

Q pscoast-R70W/50N/30E/85Nr-JA30W/ 90N/10-Gpeachpuff -Slightblue -B30g30 -P > greenland1.ps

9 pscoast -Rg -JG20W/50/4 -Gpeachpuff Slightblue -P -B30g30 > greenland2.ps

Thematic (Global) Map Projections

Q Most have the syntax:

- -JDIon ${ }_{0}$ /width

Q - J Slon $_{0}$ /scale
Q scale can be

- plot units per degree
- 1:xxxxx

Q Thematic Map Projections include;

- \mathbf{H} (or h): Hammer [E]

Q R (or r): Robinson (National Geographic Society)
© I (ori): Sinusoidal [E]

Exercise: Hammer, Robinson and Sinusoidal

9 Task: Plot 3 global maps centered on the Americas

Q Use Hammer, Robinson, and Sinusoidal

- You choose colors and pens

9 Use crude coastlines and -A10000

