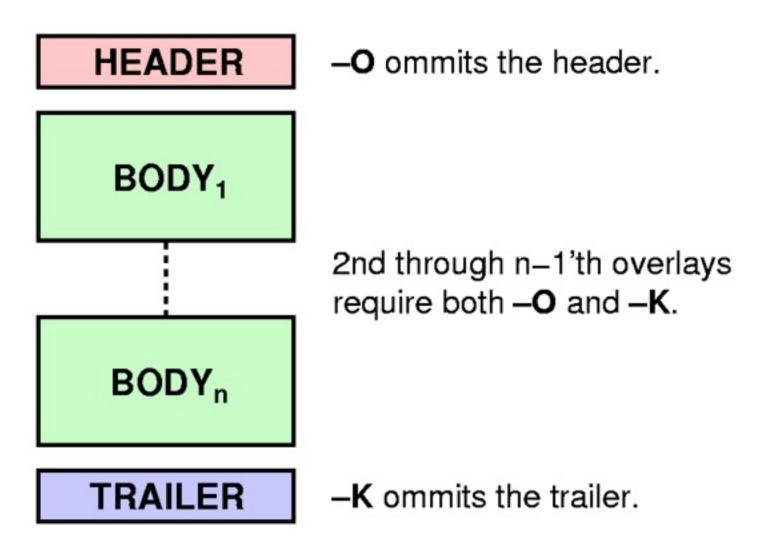
Postscript files

- Postscript is a programming language for describing how a page is to be printed or displayed
- Plain text files that contain postscript code
- Have a .ps or .eps termination
- Can be opened with a texteditor and manipulated


Postscript files

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 340 340
%%Title: GMT v3.0 Document from pscoast
%%Creator: Username Gaina
%%DocumentNeededResources: font Times-Roman
%%CreationDate: Mon Feb 15 12:30:19 1999
%%Orientation: Portrait
%%EndComments

%%BeginProlog

% End of basemap S 0 A %%Trailer % Reset translations and scale and call showpage S -353 -353 T 4.97417 4.97417 scale showpage

Building valid PostScript files

shell script template

- Use <u>scripts</u> when more than 1–2 commands are required
- Allows comments to be added
- Executable scripts behave like any other command
- It is faster to edit a script and rerun it than typing from scratch or doing copy/paste on the command line

Text editor

So write scripts we need a text editor e.g. vi, textmate, notepad

We will be using NotePad++ in windows

- Go to Start Programs NotePad++
- Go to Settings Preferences New Document/Default Directory – Change format to UNIX

The ksh template

In NotePad++ document, type

- 🝚 #!/bin/bash
- # Project:
- 🝚 # Date:
- # Author: <Your Name>
- Save it as template.sh
- Question Run dos2unix template.sh
- Make it executable:
 - 🝚 chmod +x template.sh
- Use as template for future scripts

Exercise: Seismicity Script

- We want to plot the epicenters of earthquakes over a background Mercator coastline map. We will use data from the tutorial directory we just copied over (data set quakes.ngdc and colour table quakes.cpt).
- Solution In particular, our map should have circles whose:
 - Size scale with earthquake magnitude
 - Second contermediates and contermediates and contermediates and content of the co

quakes.ngdc

Historical tsunamigenic earthquakes from NGDC

Plain ASCII data table with 3 header records.

Historical Tsunami Earthquakes from the NGDC Database

Year Mo Da Lat+N Long+EDep Mag1987 01 0449.77149.294894.11987 01 0939.90141.680676.81987 01 0939.82141.640844.0

Converting quakes.ngdc

- We want input records with lon lat depth size
- We choose size = 0.04 * magnitude
- Solution The UNIX tool awk can do this for use
- awk `{if (NR > 3) print \$5, \$4, \$6, 0.04*\$7}' quakes.ngdc > quakes.d

Output now looks like:

- 149.29 49.77 489 0.082
- 141.68 39.90 067 0.136
- • •

Assigning quake colors

W Typical seismicity color scheme is:

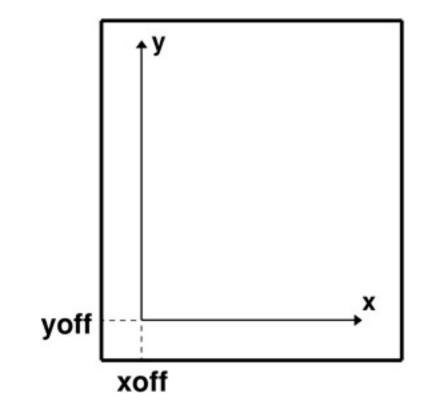
- Red for shallow quakes (0-100 km)
- Green for middle depths (100–300 km)
- Blue for deep quakes (> 300 km)

<pre># color palette for seismicity</pre>					
#z0	start-color	z1	end-color		
0	red	100	red		
100	green	300	green		
300	blue	1000	blue		

Exercise: Seismicity Script cont...

- Task: Write a script that plots historical seismicity on top of a Mercator geographic map as specified above. Pick contrasting colors for your map. Add a map scale (-L).
- pscoast -R130/150/35/50 -JM12 -B5WSne -P -Ggray -K -Lf134/49/42.5/500 > seis.ps
- psxy -R -JM -O -Cquakes.cpt quakes.d -Sc -W0.25p >>
 seis.ps
- Select another symbol
- Let deep earthquakes be cyan instead

Exercise: Sealevel


- Create a graph showing various sea-level curves using the ASCII files in the tutorial directory
 - Plot all sealevel curves as different coloured lines on the same plot
 - x axis to be sea-level (m) and the y axis to be Age (Ma)
 - Check the min/max of each file to make sure you get the frame right

Hints

- 🍚 Use psxy
- Projection is –JX
- Remember your -K and -O assignments
- Only want a line plotted, so we only need –W option e.g. –W1/blue
- The frame should be the same for all because we only want one basemap with all curves plotted on one graph

Positioning maps on the page

- —Xxoff and —Yyoff relocates the origin
- Default is (1, 1) for start of new plot
- Default is (0, 0) for overlays.
- Relative (default) or absolute positioning is possible
- —Xc and —Yc centers a
 plot on the page

Exercise: Compare Sea-level 1

More on sea-level curves:

- Change the origin of the graph to be in the top right hand corner
- The y-axis should start at 0 and move down to 140 Ma
- Tip: to change the direction of an axis, place a negative sign before the width of scale for the axis you would like to reverse

Exercise: Compare Sea-level 2

More on sea-level curves.

- Plot a graph to the right of the sea-level curve showing spreading rate
- Plot another graph to the right of that showing ridge length
- When you plot them, notice that they are not very smooth. Plot the data points from each file as circles to see where the data is located.

Exercise: Three Maps on Page

- Task: Plot a three-map panel vertically on the same page:
 - Each global map should be centered on the Americas
 - Use Hammer, Robinson, and Sinusoidal
 - You choose colors and pens

Exercise: Australia

- Section Create the following map:
 - Mercator map of Australia
 - Coastlines as black, continental fill as green and ocean as blue.
 - Rivers plotted
 - Sydney to be plotted as a big red star and Melbourne as a small black circle
 - Annotations every 10 degrees, tickmarks very 1 degree and no gridlines. I only want the annotations and ticks on the Western and Southern borders

Title of the map to be "Great Southern Land"

Month Name Formatting

- Month abbreviation selected with parameter
- TIME_FORMAT_PRIMARY | SECONDARY
- Result depends on setting of the parameter TIME_LANGUAGE

Format	Effect on name
<mark>f F</mark> ull	January (or JANUARY)
a Abbreviated	Jan (or JAN)
c Character	J (or J)

Interval units

Fla g	Unit	Description
Υ	Year	Plot using all 4 digits
у	Year	Plot using last 2 digits
0	Month	Format annotation using PLOT_DATE_FORMAT
0	Month	Plot as 2-digit integer (1-12)
U	ISO week	Format annotation using PLOT_DATE_FORMAT
u	ISO week	Plot as 2-digit integer (1-53)
r	Gregorian week	7-day stride from start of week (TIME_WEEK_START)
К	ISO weekday	Plot name of weekday (TIME_LANGUAGE)
k	Weekday	Plot as integer (1-7) (TIME_WEEK_START)
D	Date	Format annotation using PLOT_DATE_FORMAT
d	Day	Plot day if month (1-31) or year (1-366) (PLOT_DATE_FORMAT)
R	Day	Same as d, aligned with week (TIME_WEEK_START
Н	Hour	Format annotation using PLOT_CLOCK_FORMAT
h	Hour	Plot as 2-digit integer (0-24)
М	minute	Format annotation using PLOT_CLOCK_FORMAT
m	Minute	Plot as 2-digit integer (0-60)
С	second	Format annotation using PLOT_CLOCK_FORMAT 20

Using PLOT_DATE_FORMAT

- Controls how dates are plotted
- **Gregorian calendar**:
 - Combine yyyy (or yy), mm, and dd
 - For day of year use yyyy (or yy) and jjj
 - Optionally separate items with delimiters
 - o instead of mm plots month names
- 😡 ISO calendar:
 - \bigcirc Use template yyyy[-]W[-]ww[-]d
 - u instead of W[-]ww gives "Week ##"
- Start with leading to avoid leading zeros

Examples of **PLOT_DATE_FORMAT**

- **yyyy-mm-dd** [**Default**]
- mmyyyydd

- o yyyy month as name not number

Using PLOT_CLOCK_FORMAT

- Controls how time is plotted
- Combine hh, mm, and ss
- For decimals, append .xxx
 - Applies to smallest specified unit only
 - Wumber of x indicates desired precision
- Optionally separate items with delimiters
- For 12-hour clocks, append am, AM, a.m., or A.M.

Examples of **PLOT_CLOCK_FORMAT**

- hh:mm:ss [Default]
- 🍚 hhmm
- hh:mm:ss.xxx seconds with decimals
- 🍚 hh

Exercise: Plots with Dates

Task: Plot a single x-axis for interval April 1 to May 25, 2000, annotate with month name and the date of the start of each week.

gmtset PLOT_DATE_FORMAT -o ANNOT_FONT_SIZE +9p
psbasemap -R2000-4-1T/2000-5-25T/0/1 -JX12T \
-Bpa7Rf1d -Bsa10S -P > plot.ps

Try a different time interval

Let the y-axis be the time axis instead

Exercise: Plots with Dates cont...

Task: Plot a single x-axis for interval September 15 to September 17, 2008, annotate with 6 hour intervals and the daily date.

gmtset PLOT_CLOCK_FORMAT hh:mm \
 PLOT_DATE_FORMAT mm/dd
psbasemap -R2008-9-15T/2008-9-17T/0/1 -JX12T \
-Bpa6Hf1h -Bsa1DS -P > plot2.ps

Plot the weekday instead of date

Let the y-axis be the time axis instead