Gridded data sets (*.grd files)

Q Stored as binary files
Q written in netCDF
Q Do not attempt to open in a texteditor!
© Grids are equidistant
Q Grid spacing is fixed ($\Delta x, \Delta y$ are constants)
Q Header section contains all information
Q w/e/s/n region
Q grid spacing
Q various text strings describing the data

Raster Data

Grid file registrations

Q Gridline registration has 1 row/column more than pixel registration
Q Gridline registration has nodes at gridline intersections whereas pixel registration has nodes centered on the grid boxes

Grid use in this course

9 Contouring of grids
Q Assumes we have grids ready to use
9 Gridding of arbitrarily spaced data
Q Have (x, y, z) data but need a regular grid
Q Imaging of grids
Q Assign colors and illumination
Q Mathematical manipulation of grids
Q Filtering, masking, whatever

Querying Raster Data

Q Raster data cannot be opened with a text editor

Q grdinfo gives information about a grid
9 min, max
9 grid spacing
Q $n x$ and ny
Q statistics
Q grid registration
Q Some options exist to modify output format; see the grdinfo man page

The Bermuda example

Q In your Data directory there are two files for Bermuda covering an area $-\mathrm{R}-66 /-60 / 30 / 35$
Q age of oceanic lithosphere bermuda_age.grd
Q bathymetry from ETOPO5 bermuda_bath.grd

The Bermuda example

Q Type the following in the terminal: grdinfo bermuda_age.grd

bermuda_age.grd: Title: Sea floor age from Muller et al., 1998 [v1. $\overline{6}$]
bermuda_age.grd: Command: grdraster 1 -R-66/-60/30/35 Gbermuda_age.grd -V
bermuda_age.grd: Remark: /geo/data/grid/i2grids/age_1.6.i2
bermuda_age.grd: Gridline node registration used
bermuda_age.grd: Grid file format: nf (\# 18) GMT netCDF format (float) (COARDS-compliant) [DEFAULT]
bermuda_age.grd: x_min: -66 x_max: $-60 x^{x} i n c: 0.1$ name: Longitude in degrees $\mathrm{nx}: \overline{61}$
bermuda_age.grd: y_min: 30 y_max: 35 y_inc: 0.1 name: Latitude in degrees ny: 51
bermuda_age.grd: z_min: 96.47 z_max: 140.92 name: Ma bermuda_age.grd: scale_factor: 1 add_offset: 0

The Bermuda example

Q What is the min and max age of oceanic lithosphere around Bermuda? grdinfo bermuda_age.grd

Q What about the bathymetry? grdinfo bermuda_bath.grd

Q Answers: age 96 and 141 m.yrs, bath -5475 to -89 meters

Contouring

Q grdcontour will draw contours
Q Takes $\mathbf{- J}$ and optionally $\mathbf{- R}$ (default region is assumed to be the grid region)

Q Several options determine how the contouring will take place
Q contour interval
9 annotation interval
Q contour limits
Q various embellishments

grdcontour options

Option	Purpose
$\mathbf{- A}$	Set annotation interval
$\mathbf{- C}$	Set contour interval or name of cpt file
$\mathbf{- G}$	Choose where annotations occur (see App O)
$\mathbf{- \mathbf { L }}$	Limit the range of contours to draw
$\mathbf{- N}$	Append unit to contour labels
$\mathbf{- \mathbf { Q }}$	Skip contours with very few points
$\mathbf{- \mathbf { S }}$	Resample contours to make them smoother
$\mathbf{- \mathbf { T }}$	Tick and annotate innermost closed contours
$\mathbf{- \mathbf { W }}$	Set pens for contour lines
$\mathbf{- Z}$	Scale/offset values before processing

Introduction to contouring

Q Make Mercator map with 250 m contour interval and 1 km annotation interval of the Bermuda bathymetry
grdcontour bermuda_bath.grd -JM10 C250 -A1000 -P -B2 > ex16.ps

grdcontour theme variations

Q Add smoothing with - S4
© Skip small features with $\mathbf{- Q}$
9 Override region using -R-70/-60/25/35
Q Scale data to km and use km in the annotations ($-\mathbf{N}$)

Gridding of data

Q We distinguish between two scenarios:

- The (x, y, z) data are already on a regular lattice

9 Simply reformat with xyz2grd

- The ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) data are unevenly distributed

9 Grid data using local procedures
Q nearest neighbor (nearneighbor)
Q triangulation (triangulate)
Q Grid data using global procedures
Q surface splines in tension (surface)
Q All need -Rw/e/s/n, -Idx/dy, and -Ggridfile

Nearest Neighbour Gridding

$$
w_{i}^{r}=\left(1+\frac{9 r_{i}^{2}}{R^{2}} \frac{)^{-1}}{\dot{j}}\right.
$$

Q Assigns an average value to each node that has one or more points within a radius centered on the node

Q Average value is a weighted mean of the nearest point from each sector inside the search radius i.e. points have radial weight
(9) $\mathrm{R}=$ search radius

Q $r=$ distance from node

nearneighbor options

Q Takes -Rw/e/s/n, -Idx/dy, and -Ggridfile
Q Four other options are relevant:

Option	Purpose
- Sradius $[\mathbf{k}]$	Search radius. Append \mathbf{k} for km
- Eempty	Sets empty nodes to this value $[\mathrm{NaN}]$
- Nsectors	Sets the number of sectors $[4]$
$-\mathbf{W}$	Read point weights as well $(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})$

Nearneighbor Exercise

Q Navigate to your tutorial directory
Q Run minmax on ship.xyz to get region to nearest 5°

Q Grid using nearneighbor
Q Select a 5 arc minute grid spacing
Q Specify 40 km search radius R

- Use default sectors [4]
nearneighbor \$region -I5m -Gship.nc
-S40k -V ship.xyz

Nearneighbor Exercise cont ..

Q Make a Mercator contour map using the new data set:
Q contours every 250 m
9 annotations every 1 km
Q contours in blue
Q don't do any smoothing or filtering

Nearneighbor Exercise cont ..

Q Try a search radius of 100 km and a 10 minute grid spacing
9 How do the plots differ?
Q Use pscoast to plot coastlines.
9 Where in the world are we?

Gridding with Splines in Tension

Q Physically, we force a thin elastic plate to go through all data points while pulling at the edges (tension).
Q Takes -Rw/e/s/n, -Idx/dy, and -Ggridfile
9 Three other options are relevant:

Option	Purpose
-Aaspect	Sets aspect ratio [1]

-Climit Sets convergence limit [1/1000 of the actual data range
-Ttension Sets the tension [0]

Preprocessing

9 surface needs either one or no data points per node; more will introduce aliasing
Q preprocessing depends on data properties; we usually average using
Q means (blockmean)
9 medians (blockmedian)
9 modes (blockmode)
Q Each program takes $\mathbf{- R}, \mathbf{- I}$
Q Use -W if there are data point weights
Q Output has one or no data point per node

Map exercise 18

Q Preprocess ship.xyz using medians, grid with surface, and repeat contouring exercise 17 but using the new dataset. Lay down light gray continents after contouring
blockmedian \$region -I5m ship.xyz > ship_5m.xyz
surface \$region -I5m -Gship_s.nc -V ship_5m.xyz -A0. 9

Gridding comments

Q Is there a difference between the grid made by nearneighbor and the one using surface?

9 Surface is a global gridding method and it will evaluate the solution at all nodes, even if there are no data constraints

Interpreting Results

Q In order to find out which gridding method works best, we have to know what the spacing of our original data was.
Q Use psxy to plot the data points on top of each of your interpolation grids
Q Input file is ship.xyz

Gridding comments

Q To deal with unconstrained areas:

- Reset nodes too far from data to NaN

9 grdmask - grdmath
Q Paint the unconstrained regions white
Q psmask

- Plot land on top

Q pscoast
Q Use clip path so only constrained contours will appear.
@ psmask

