Advanced Data Processing

© Extract data subsets
Q gmtselect : geographical filtering
@ Resampling of gridded files
Q grdedit: Modify header and content
Q grdsample : resample onto new grid
Q grdtrack: sample at arbitrary points
9 grd2xyz: Convert grids to tables
Q Arbitrary grid operations
Q grdmath : Manipulate grids mathematically

Resampling grids: grdsample

Q Resample to new grid spacing, region
Q -R and -I options

- Convert from gridline to pixel registration

Q -T and -F options

- Control over the interpolation method Q -Q option

Exercise: Resample your grid

9 What is the current grid spacing of your agegrid in minutes?
Q Note: The default value is degree
Q Work out how to change your agegrid to have a grid spacing of 10 m
grdsample age3.6.grd -Gage_10m.grd -I10m -V

Sample grid along profile

Q grdtrack allows you to sample a 2D grid along a 1D profile
Q Interpolates values at each of your profile locations

Q Input: grid file and an ASCII file with x and y positions

- Control interpolation method Q -Q option
© Suppress NaN values
Q -S option

Exercise: Sample along ship track

- Compare ship-track derived magnetic anomaly data with two satellite-derived magnetic models along the same profile.
© ship-track file: eel32_mag.xymd contains long, lat, magnetic anomaly, distance
Q satellite-derived file 1: EMAG2 (Earth Magnetic Anomaly Grid)
Q satellite-derived file 2: WDMAM (World Digital Magnetic Anomaly Map)
- Extract satellite derived magnetic anomalies from the EMAG2.grd file along the same ship track profile using grdtrack
- Do the same for the WDMAM data set

9. Use psxy to create a linear plot of distance vs magnetic

Exercise: Sample along ship track

Q Compare ship-track derived magnetic anomaly data with two satellite-derived magnetic models along the same profile.
© ship-track file: eel32_mag.xymd contains long, lat, magnetic anomaly, distance
Q satellite-derived file 1: EMAG2 (Earth Magnetic Anomaly Grid)
Q satellite-derived file 2: WDMAM (World Digital Magnetic Anomaly Map)

Exercise: Sample along ship track

Q Take the following steps:
Q Plot the ship-track data on a map to work out where in the world you are (hint: use minmax to get region)

Q Extract satellite derived magnetic anomalies from the EMAG2 file along the same ship track profile using grdtrack (hint: input 1D dataset is eel32__mag.xymd and input grdfile is EMAG2.grd)

- Do the same for WDMAM file
- Reformat the output from grdtrack to be a file with distance, magnetic anomaly (hint: use awk)

Exercise: Sample along ship track

9 grdtrack eel32_mag.xymd -
GWDMAM_NGDC_V1.1.grd -V >tmp1
© grdtrack eel32_mag.xymd -GEMAG2.grd -V $>$ tmp2

9 awk \{print $\$ 4, \$ 3\}$ eel32_mag.xymd |psxy -R0/2777/-505/400 -JX10 -W1/red -Ba100f100 -K > psfile.ps
© awk \{print \$4, \$5\}'tmp1|psxy -R0/2777/-505/400 -JX10 -W1/blue -Ba100f100 -K -O >> psfile.ps
Q awk '\{print \$4, \$5\}'tmp2 |psxy-R0/2777/-505/400 -JX10 -W1/green -Ba100f100 -O » psfile.ps

Exercise: Sample along ship track

Q Take the following steps:
Q Use psxy to create a linear plot of distance vs magnetic anomaly for all three profiles
© Label and annotate axes and also label the three plots sing pstext with the colour of text corresponding to the colour of the line used
© What is the difference between the three magnetic anomaly profiles?
9 The ship-track data should have been preprocessed (low and high pass filter). This can be done using filter1d but we will not be going into it in this course

pstext example

Q pstext \$textfile -R -JM -Sred $>$ \$psfile

Q Example of $\$$ textfile
Q 2000-300 10011 Shiptrack eel34

Q Note: Because we want different colours for each textstring we need to create 3 separate \$textfiles and run pstext 3 times

Create subset of data

Q Use grdcut to create a subset of gridded data based on a regular rectangle or square grdcut \$ingrd -R\$newregion -V -G \$outgrd
9 Use grdpaste to join two gridded data sets together along common lines
9 Use grdblend to blend two grids along common lines

Reverse Polish Notation

Q Invented by the Polish mathematician Jan Lukasiewicz (1878-1956)
9 Eliminates brackets () from mathematical expressions by placing operators after and not in-between operands
Q Implemented in HP's traditional scientific calculators
Q Used by Adobe's PostScript page description language

Examples of RPN

Like in a German sentence, the verbs come at the end!

Conventional	RPN
$3 \times(7+8)=$	$378+\times=$
$(3-8) \times(9+2) / 3=$	$38-92+\times 3 /=$
$2 \times(\sin 30-3 e-3)=$	$230 \sin 3-3 \mathrm{e} \times-\times=$
$\exp (\cos (\operatorname{sqrt}(1-p)))=$	$1 \mathrm{p}-$ sqrt $\cos \exp =$
$((((z-y)-1) \times 2)-3)=$	$z y-1-2 \times 3-=$

Most conventional calculators can only handle two levels of brackets.

Reverse Polish Notation in GMT

Q Implemented in gmtmath and grdmath
9 Works on a stack of operands
9 Operators may take one or more operands, e.g.

- ADD, SUB, MUL, DIV, JN take 2
e SIN, COS, TAN, ERF, SQRT take 1
Q Since parentheses are not used, nest your expressions and work from the inside out

grdmath

Q Performs mathematical operations on entire grids, one node at the time
Q Can read existing grids or create one from scratch (given -R -I)
Q Commands are given in Reverse Polish Notation (RPN, like old HP calculators and the PostScript language)
© Choose from over 100 functions

Working with 2 or more grids

9 Grids must be exactly equal
Q i.e. each node must correspond to the exact same location in all grids
Q e.g. grid spacing, region, $n x$ and ny, registration

Purpose of grdmath

9 Create grids and evaluate mathematical or logical expressions using RPN
9 To create an empty grid requires -R-I
Q Read grids and manipulate z content
9 Choose among ~ 100 operators
Q Special constants are available:

- X : A grid with the x coordinate of each node

Q Y : A grid with the y coordinate of each node
Q PI : Grid with the constant 3.1415926...

- E : Grid with the constant 2.7182818...

Q Any combination of the above

Simple grdmath

Q To add a constant value to all grid cells: grdmath infile.grd 15 ADD = result.grd

- To subtract a constant value to all grid cells: grdmath infile.grd 15 SUB = result.grd
© To multiply a constant value to all grid cells: grdmath infile.grd 15 MUL = result.grd
- To divide a constant value to all grid cells: grdmath infile.grd 15 DIV = result.grd

Simple grdmath

Q To add a constant value of 1000 to all grid cells and then divide by 2 :
grdmath infile.grd 1000 ADD 2 DIV = result.grd

Q To add a constant value of 1000 to all grid cells and then divide by 2 and then minus 1 : grdmath infile.grd 1000 ADD 2 DIV 1 SUB $=$ result.grd

Simple grdmath

Q To add two grids together:
grdmath infile1.grd infile2.grd ADD = result.grd

Example of RPN

If your equation is
z.grd + 2*sqrt [0.5 (a.grd + b.grd) $]+15$
then the grdmath RPN expression becomes
grdmath a.grd b.grd ADD 0.5 MUL SQRT 2 MUL z.grd ADD 15 ADD = result.grd

Exercise: Create residual map

Q Create a residual satellite-derived magnetic anomaly map based on the two magnetic models in the previous exercise (WDMAM and EMAG2)
(9. Resample the grids so that they are equal using grdsample
Q Subtract one grid from the other using grdmath
Q Create a colour palette using makecpt or grd2cpt

- Plot the grid using grdimage

Q grdsample -I6m \$infile1-G\$outfile1-V
© grdsample -I6m \$infile2 -G\$outfile2 -V

Q grdmath \$outfile1 \$outfile2 SUB = final.grd

