Advanced Data Processing

- Extract data subsets
 - gmtselect : geographical filtering
- Resampling of gridded files
 - **grdedit**: Modify header and content
 - grdsample : resample onto new grid
 - **grdtrack** : sample at arbitrary points
 - grd2xyz : Convert grids to tables
- Arbitrary grid operations
 - grdmath : Manipulate grids mathematically

Resampling grids: grdsample

- Resample to new grid spacing, region
- Convert from gridline to pixel registration
- Control over the interpolation method
 - Q option

Exercise: Resample your grid

- What is the current grid spacing of your agegrid in minutes?
 - Note: The default value is degree
- Work out how to change your agegrid to have a grid spacing of 10m

grdsample age3.6.grd -Gage_10m.grd -I10m -V

Sample grid along profile

- grdtrack allows you to sample a 2D grid along a 1D profile
- Interpolates values at each of your profile locations
- Input: grid file and an ASCII file with x and y positions
- Control interpolation method
 - Q option
- Suppress NaN values
 - 🝚 –S option

- Compare ship-track derived magnetic anomaly data with two satellite-derived magnetic models along the same profile.
 - ship-track file: eel32_mag.xymd contains long, lat, magnetic anomaly, distance
 - satellite-derived file 1: EMAG2 (Earth Magnetic Anomaly Grid)
 - satellite-derived file 2: WDMAM (World Digital Magnetic Anomaly Map)
 - Extract satellite derived magnetic anomalies from the EMAG2.grd file along the same ship track profile using grdtrack
 - Do the same for the WDMAM data set
 - Use psxy to create a linear plot of distance vs magnetic

- Compare ship-track derived magnetic anomaly data with two satellite-derived magnetic models along the same profile.
 - ship-track file: eel32_mag.xymd contains long, lat, magnetic anomaly, distance
 - satellite-derived file 1: EMAG2 (Earth Magnetic Anomaly Grid)
 - satellite-derived file 2: WDMAM (World Digital Magnetic Anomaly Map)

- **G** Take the following steps:
 - Plot the ship-track data on a map to work out where in the world you are (hint: use minmax to get region)
 - Extract satellite derived magnetic anomalies from the EMAG2 file along the same ship track profile using grdtrack (hint: input 1D dataset is eel32_mag.xymd and input grdfile is EMAG2.grd)
 - Do the same for WDMAM file
 - Reformat the output from grdtrack to be a file with distance, magnetic anomaly (hint: use awk)

- grdtrack eel32_mag.xymd GWDMAM_NGDC_V1.1.grd -V > tmp1
- grdtrack eel32_mag.xymd -GEMAG2.grd -V > tmp2
- awk '{print \$4, \$3}' eel32_mag.xymd | psxy -R0/2777/-505/400 -JX10 -W1/red -Ba100f100 -K > psfile.ps
- wk '{print \$4, \$5}' tmp2 | psxy -R0/2777/-505/400
 _JX10 -W1/green -Ba100f100 -O >> psfile.ps

- **G** Take the following steps:
 - Use psxy to create a linear plot of distance vs magnetic anomaly for all three profiles
 - Label and annotate axes and also label the three plots sing pstext with the colour of text corresponding to the colour of the line used
 - What is the difference between the three magnetic anomaly profiles?
 - The ship-track data should have been preprocessed (low and high pass filter). This can be done using filter1d but we will not be going into it in this course

pstext example

pstext stextfile -R -JM -Sred > spsfile

- Example of stextfile

Note: Because we want different colours for each textstring we need to create 3 separate stextfiles and run pstext 3 times

Create subset of data

Subset of gridded data
Use grdcut to create a subset of gridded data
based on a regular rectangle or square
grdcut Singrd -B\$pewregion -V -G

grdcut \$ingrd -R\$newregion -V -G \$outgrd

- Use grdpaste to join two gridded data sets together along common lines
- Use grdblend to blend two grids along common lines

Reverse Polish Notation

Invented by the Polish mathematician Jan Lukasiewicz (1878–1956)

- Eliminates brackets () from mathematical expressions by placing operators <u>after</u> and not <u>in-between</u> operands
- Implemented in HP's traditional scientific calculators

Used by Adobe's PostScript page description language

Examples of RPN

Like in a German sentence, the verbs come at the end!

Conventional	RPN
3 × (7 + 8) =	378 + × =
(3-8) × (9 + 2) / 3 =	38-92+×3/=
2 × (sin30 – 3e-3) =	2 30 sin 3 -3 e × - × =
exp(cos(sqrt(1 - p))) =	1 p – sqrt cos exp =
$((((z - y) - 1) \times 2) - 3) =$	z y – 1 – 2 × 3 – =

Most conventional calculators can only handle two levels of brackets.

Reverse Polish Notation in GMT

- Implemented in gmtmath and grdmath
- Works on a <u>stack</u> of <u>operands</u>
- Operators may take one or more operands, e.g.
 - ADD, SUB, MUL, DIV, JN take 2
 - SIN, COS, TAN, ERF, SQRT take 1
- Since parentheses are not used, nest your expressions and work from the inside out

grdmath

- Performs mathematical operations on entire grids, one node at the time
- Can read existing grids or create one from scratch (given R I)
- Commands are given in Reverse Polish
 Notation (RPN, like old HP calculators and the PostScript language)
- Choose from over 100 functions

Working with 2 or more grids

- Grids must be exactly equal
 - i.e. each node must correspond to the exact same location in all grids
 - e.g. grid spacing, region, nx and ny, registration

Purpose of grdmath

- Create grids and evaluate mathematical or logical expressions using RPN
 - To create an empty grid requires -R -I
- Read grids and manipulate z content
 - Choose among ~100 operators
 - Special constants are available:
 - **X** : A grid with the x coordinate of each node
 - Y : A grid with the y coordinate of each node
 - PI : Grid with the constant 3.1415926...
 - **E** : Grid with the constant 2.7182818...
- Any combination of the above

Simple grdmath

- To add a constant value to all grid cells:
 grdmath infile.grd 15 ADD = result.grd
- Grown State Sta
- To multiply a constant value to all grid cells:
 grdmath infile.grd 15 MUL = result.grd
- Generation of the second state of the secon

Simple grdmath

Solution Foundation Foundation Found to a strain found to a str

grdmath infile.grd 1000 ADD 2 DIV =
result.grd

To add a constant value of 1000 to all grid cells and then divide by 2 and then minus 1:

grdmath infile.grd 1000 ADD 2 DIV 1
SUB = result.grd

Simple grdmath

To add two grids together:
 grdmath infile1.grd infile2.grd ADD =
 result.grd

Example of RPN

If your equation is

z.grd + 2*sqrt [0.5 (a.grd + b.grd)] + 15

then the grdmath RPN expression becomes

grdmath a.grd b.grd ADD 0.5 MUL SQRT
2 MUL z.grd ADD 15 ADD = result.grd

Exercise: Create residual map

- Create a residual satellite-derived magnetic anomaly map based on the two magnetic models in the previous exercise (WDMAM and EMAG2)
 - Resample the grids so that they are equal using grdsample
 - Subtract one grid from the other using grdmath
 - Create a colour palette using makecpt or grd2cpt
 - Plot the grid using grdimage

grdmath soutfile1 soutfile2 SUB = final.grd