typewriter
font is as it occurs in the input
files.
#
on a line is ignored as a comment. Values cannot be split over multiple lines.
#
is
a section heading in the input file and when using the vim editor with default
colouring should be displayed in red. Any text following ##
will be displayed as a comment and should appear in blue while any text after
#:
indicates a material section heading.
Below is a snippet from an Ellipsis input file. The only information
that Ellipsis will get from it is the values for dimenx
, dimenz
and dimeny
. Everything else (including indentation) is solely
for the benefit of the user.
# MODEL DESIGN
## Novice
## Cartesian
dimenx=3.0 ## size of box - grid extents in arbitrary units (no default)
dimenz=2.0
dimeny=1.0
Parameter names are case-sensitive.
VERBOSE
and verbose
are two different parameters.
:set syn=ellipsis
For more information on using VIM (which is by far one of the best multiplatform, free text editors on the market), see the University of Sydney Institute of Marine Science Geophysics Handbook.
augroup filetype
au!
au! BufRead,BufNewFile *.input
set filetype=ellipsis
augroup END
so $HOME/.vim/myfiletypes.vim
augroup filetype
au!
au! BufRead,BufNewFile *.input set filetype=ellipsis
augroup END
on
or off
. Numbers are also valid, with 0
being a
synonym for off, and all other numbers synonymous with on.
For example, if you decide to give linear length measurements in thousands of rods (krd), time in fortnights (fn), and mass in ounces (oz), then you must give thermal diffusivity in millions of square rods per fortnight (Mrd2:fn-1), and dynamic viscosity in milli-ounces per rod per fortnight (moz:rd :fn ). However, there are a couple of exceptions (notably angular measures) that are pointed out in this document.
In order to non-dimentionalise the values used in the Ellipsis input file one must convert from real-world values into non-dimentional values by using scaling factors. Care must be taken with this since there are some values which are independent and others that are dependant. Independent variables can be scaled arbitrarily while dependent variables are derived from combinations of independent variables.
Independant | Dependant |
---|---|
Density | Stress |
Gravity | Strain |
Length | Viscosity |
Temperature | Velocity |
Thermal Diffusivity | Specific Heat |
Time |
A simple way of calculating an independent scaling factor is by using:
value_ellipsis = value_nature/value_scale
Take care to make sure all dependent variables are scaled according to the
scaling of the independent variables
If you would like to use Ellipsis you musy first obtain a copy of the source code, which you will probably find at web-address. You must then compile it under your system. At the moment Ellpispis will only run under UNIX, Linux and OSX. To compile Ellipsis simply enter the directory named Perl Scripts and run the Build Ellpisis script. This should compile Ellipsis and place an executable file in the top level of the Ellipsis directory strucure.
To run Ellipsis you simply type:
$HOME/ellipsis/executeable/path input_file.input
DESCRIBE=off
(Boolean) Whether to describe the
search for parameters. Default is off.
VERBOSE=off
(Boolean) Whether to print out the
input values as they are read in. Default is off.
BEGINNER=off
(Boolean) Whether to be verbose when
parameters are missing. Only applicable when VERBOSE=on. Default is off.
verbose=off
(Boolean) Whether the code should
be verbose about its behavior. Default is off.
datafile="root_name"
(String) The root name of the output
file names, ie. the prefix to which all file extensions will be appended.
vel_relaxations=10
Maximum number of velocity
loops. Default is 2.
piterations=100
Maximum Uzawa iteration loops.
Default is 100.
viterations=20
Number of velocity iterations before
checking convergence. Default is 251, although 20 is good from modelling experience.
dimenx=3.0
(Real) Length of model along the X axis
dimenz=2.0
(Real) Length of model along the Z axis
dimeny=1.0
(Real) Length of model along the Y axis
(only relevant for when Geometry=cart3d is selected)
The resolution can then be changed in two ways, by either increasing the base mesh resolution (increasing the model resolution) or by increasing the number of multigrid levels (increasing model resolution).
mgunitx=15
Number of elements in the X axis direction
for the base (coarsest) multigrid. Minimum is 2.
mgunitz=5
Number of elements in the Z axis direction
for the base (coarsest) multigrid. Minimum is 2.
levels=4
Number of multigrid levels. Minimum
is 1.
Tracers=on
Initialise tracers.
Always set to on.
Tracer_appetite=0.5
Size(tracer1)+size(tracer2)
) * Tracer_appetite (default=0.5)
Tracer_voids=off
Allow tracers to disappear (default=off)
Tracer_rect=1
Number of rectangular regions of
different tracer densities (default=0)
Tracer_rect_density=4
Tracer density (N x N per
finest element) (<=12)
Tracer_rect_x1=0
Coordinate extent of region.
Same size as the model box!
Tracer_rect_x2=3
Tracer_rect_z1=0
Material_Number_Property=
where Number is the corresponding material number (0,1,2,...)
and Property is the various material property variable name you
wish to set (eg. density
, thermal_diff
).
Not all materials defined in this section must be used, this is simply creating
the materials while you assign them to regions of the model in the Assign
Material section.
TDEPV=off
instead of having to negotiate your way
through each material property and set the parameters to yeild no temperture
sependant rheology.
TDEPV=on
Turns temperature dependent rheological
parameters on or off. Default is on. off is faster than turning all viscosity
values to 1)
VMAX=off
Limit the value for viscosity to a maximum
value (set below). Default is off.
VMIN=off
Limit the value for viscosity to a minimum
value (set below). Default is off.
visc_max=
Set the value for maximum viscosity cut-off.
No default.
visc_min=
Set the value for minimum viscosity
cut-off. No default.
SDEPV=off
Use stress dependence of viscosity.
Default is off.
GRDEPV=off
Use grain size dependence of viscosity.
Default is off.
YIELD=off
Turn on/off yield stress parameters.
Default is off.
Material_4_therm_exp=1.0 # thermal expansion coefficient (default=0.0)
Material_4_therm_diff=1 # thermal diffusivity (default=0.0)
Material_4_Cp=1 # isobaric heat capacity (default=1.0)
Material_4_Qt=1.0 # internal heating rate by mass (default=0.0)
## Melt Parameters
Material_4_depl_T_type=1 #Depletion model, 1=pressure
#2=depth
Material_4_depl_exp=0.0 #Density change of depleted material
Material_4_sp0=0.6 # Solidus of material, based on third order
Material_4_sp1=2e-5 # polynomial fit of data:
Material_4_sp2=0.0 # s=sp0+sp1*p+sp2*p^2+sp3*p^3
Material_4_sp3=0.0
Material_4_lp0=0.75 #Liquidus, defined same way
Material_4_lp1=2e-5
Material_4_lp2=0.0
Material_4_lp3=0.0
#: Air
## Novice
Material_0_density=0.01 ## density (default=1.0)
Material_0_Bulk_visc=2.0 ## bulk visc ratio at initial porosity ( >1.0(2D), >2/3(3D) )
## bulk visc = ratio*visc (default=-1.0=infinite)
## div(v) + p/(bulk_visc-2/3*visc) = 0
Material_0_Bulk_modulus=0.0 ## B in dp = B*div(v)*dt (slightly compressible formulation)
## (default=0.0) where dp is on tracers (isotropic stress)
## Colouring
Material_0_Red=1.0,1 ## RGB values for "cold" material (list one per PPM file)
Material_0_Green=1.0,1 ## ("hot" and "cold" are determined from T extremes)
Material_0_Blue=1.0,1
Material_0_Opacity=1.4,1.4 ## opacity for "cold" material (negative=off)
Material_0_Red_hot=0.76,1 ## values for "hot" material
Material_0_Green_hot=0.92,1
Material_0_Blue_hot=1.0,1
Material_0_Opacity_hot=1.4,1.4
Material_0_Red_strained=0.76,0.76 ## values for strained material
Material_0_Green_strained=0.92,0.92
Material_0_Blue_strained=1.0,1.0
Material_0_Opacity_strained=1.4,1.4
## Advanced
Material_0_reproduction=on ## allow tracer reproduction (default=on)
## Rheological model
Material_0_rheol_T_type=1 ## rheological temperature-dependence model (default=2)
## (1) visc=N0*exp(-T1*T) (Frank-Kamenetski)
## (2) visc=N0*exp{ (E+Z*z)/(T1*(T+T0)) } (Arrhenius)
## where z=depth
Material_0_viscN0=1e-2 ## N0 in viscosity models (default=1.0)
Material_0_viscT1=0.0 ## T1 in viscosity models (default=1.0)
## Thermal parameters
Material_0_therm_exp=0.0 ## thermal expansion coefficient (default=0.0)
Material_0_therm_diff=1e9 ## thermal diffusivity (default=0.0)
Material_0_Cp=1.0 ## isobaric heat capacity (default=1.0)
Material_0_Qt=0.0 ## internal heating rate by mass (default=0.0)
## Stress-strain relationship - ## YIELD PARAMATERS ##
## stress = visc * (strain rate)
## post-yield visc = (yield stress)/(strain rate)
## yield stress = max{ (B0 + Bz*z + Bp*p) * f(e,edot) , minimum yield stress }
## yield stress = min{ (B0 + Bz*z + Bp*p) * f(e,edot) , maximum yield stress }
## yield stress = yield stress * 0.001, if (-p) > Bc
## e=strain, z=depth, p=pressure
## f(e,edot) = decreasing power law for 0 < e < E0 and 0 < edot < Edot0
## = constant for e > E0 and edot > Edot0
## f(e,edot) = 1 - (1-Ea)*(e/E0)^En - (1-Edota)*(edot/Edot0)^Edotn
Material_0_yield_stress_minimum=1.e-32 ## minimum yield stress for plastic deformation (default=1.e-32)
Material_0_yield_stress_maximum=1.e32 ## maximum yield stress for semi-brittle effect (default=1.e32)
Material_0_yield_stress_B0=1.e32 ## "cohesion" B0 in above eqn (default=1.e32)
#: Upper crust
## Novice
Material_1_density=2900 ## density (default=1.0)
Material_1_porosity=0.05 ## initial porosity (default=0.0)
## NB: initial porosity = 0 ensures that Bulk_visc is constant
Material_1_Bulk_visc=-1.e3 ## bulk visc ratio at initial porosity ( >1.0(2D), >2/3(3D) )
## bulk visc = ratio*visc (default=-1.0=infinite)
## div(v) + p/(bulk_visc-2/3*visc) = 0
Material_1_Bulk_modulus=0.0 ## B in dp = B*div(v)*dt (slightly compressible formulation)
## (default=0.0) where dp is on tracers (isotropic stress)
## Colouring
Material_1_Red=0.0,.7,.7 ## RGB values for "cold" material (list one per PPM file)
Material_1_Green=0.0,.6,.6 ## ("hot" and "cold" are determined from T extremes)
Material_1_Blue=2.0,.1,.1
Material_1_Opacity=1.4,1.4,1.4 ## opacity for "cold" material (negative=off)
Material_1_Red_hot=2.0,1,1 ## values for "hot" material
Material_1_Green_hot=0.0,0,0
Material_1_Blue_hot=0.0,0,0
Material_1_Opacity_hot=1.4,1.4,1.4
Material_1_Red_strained=0.0,1.0,0 ## values for strained material
Material_1_Green_strained=0.0,0.0,0
Material_1_Blue_strained=1.0,0.0,1
Material_1_Opacity_strained=1.4,0.4,1.4
## Advanced
Material_1_reproduction=on ## allow tracer reproduction (default=on)
Material_1_phases=1 ## number of unique phases (first phase is phase 0) (default=1)
## then visc = { sum(1/visc_n) }^(-1)
Material_1_T_block=-1.e32 ## (blocking) T above which phase change can occur (default=-1.e32)
Material_1_rheol_cpts=1 ## number of rheological components (at least one per phase) (default=1)
## then visc = { sum(1/visc_n) }^(-1)
Material_1_Trange_min=-1.e8 ## temperature range to which rheology applies
Material_1_Trange_max=1.e8 ## (default=-1.e8,1.e8)
Material_1_rheol_phase=0 ## phase to which each rheology applies (start from 0) (default=0)
## Rheological model
Material_1_rheol_T_type=1 ## rheological temperature-dependence model (default=2)
## (1) visc=N0*exp(-T1*T) (Frank-Kamenetski)
## (2) visc=N0*exp{ (E+Z*z)/(T1*(T+T0)) } (Arrhenius)
## where z=depth
Material_1_viscN0=1e5 ## N0 in viscosity models (default=1.0)
Material_1_viscT1=0.0 ## T1 in viscosity models (default=1.0)
Material_1_viscT0=0.0 ## T0 in Arhennius viscosity model (default=0.0)
Material_1_viscZ=0.0 ## Z in Arrhenius viscosity model (default=0.0)
Material_1_viscE=0.0 ## E in Arrhenius viscosity model (default=0.0)
Material_1_viscTmax=1.e32 ## maximum and minimum T to use in calculating viscosity
Material_1_viscTmin=0.0 ## (default=1.e32,0.0)
Material_1_sdepv_expt=1.0 ## exponent "s" in stress dependance of viscosity
## visc = edot^[(1-s)/s] * N0^(1/s) (default=1.0)
## Thermal parameters
Material_1_therm_exp=0.0 ## thermal expansion coefficient (default=0.0)
Material_1_therm_diff=1e-2 ## thermal diffusivity (default=0.0)
Material_1_Cp=1 ## isobaric heat capacity (default=1.0)
Material_1_Qt=10.0 ## internal heating rate by mass (default=0.0)
## Stress-strain relationship
## stress = visc * (strain rate)
## post-yield visc = (yield stress)/(strain rate)
## yield stress = max{ (B0 + Bz*z + Bp*p) * f(e,edot) , minimum yield stress }
## yield stress = min{ (B0 + Bz*z + Bp*p) * f(e,edot) , maximum yield stress }
## yield stress = yield stress * 0.001, if (-p) > Bc
## e=strain, z=depth, p=pressure
## f(e,edot) = decreasing power law for 0 < e < E0 and 0 < edot < Edot0
## = constant for e > E0 and edot > Edot0
## f(e,edot) = 1 - (1-Ea)*(e/E0)^En - (1-Edota)*(edot/Edot0)^Edotn
Material_1_yield_stress_minimum=1.e-32 ## minimum yield stress for plastic deformation (default=1.e-32)
Material_1_yield_stress_maximum=1.e32 ## maximum yield stress for semi-brittle effect (default=1.e32)
Material_1_yield_stress_B0=3e3 ## "cohesion" B0 in above eqn (default=1.e32)
Material_1_yield_stress_Bz=0.0 ## "friction coefficient" Bz in above eqn (default=0.0)
Material_1_yield_stress_Bp=0.2 ## "friction coefficient" Bp in above eqn (default=0.0)
Material_1_yield_stress_Bc=1.e32 ## tension cutoff Bc in above law (default=1.e32)
Material_1_yield_stress_Ea=0.2 ## ratio Ea = f(0,0)/f(E0,0) (default=1.0,range=[0,1])0
Material_1_yield_stress_E0=0.5 ## strain weakening E0 (default=1.e32)
Material_1_yield_stress_En=2.0 ## exponent En in f(e), e<E0 (default=0.0)
Material_1_yield_stress_Edota=1.0 ## ratio Edota = f(0,0)/f(0,Edot0) (default=1.0,range=[0,1])
Material_1_yield_stress_Edot0=0.0 ## strain rate weakening Edot0 (default=0.0)
Material_1_yield_stress_Edotn=0.0 ## exponent Edotn in f(e), edot<Edot0 (default=0.0)
Material_1_yield_stress_ET=1.e32 ## T above which strain weakening is reset (default=1.e32)
Material_1_yield_stress_E0dt=0.0 ## time rate of strain reduction (healing)
## de/dt = E0dt*e (default=0.0)
#: Lower crust
## Novice
Material_2_density=2800 ## density (default=1.0)
Material_2_Bulk_visc=-1.0 ## bulk visc ratio at initial porosity ( >1.0(2D), >2/3(3D) )
## bulk visc = ratio*visc (default=-1.0=infinite)
## div(v) + p/(bulk_visc-2/3*visc) = 0
Material_2_Bulk_modulus=0.0 ## B in dp = B*div(v)*dt (slightly compressible formulation)
## (default=0.0) where dp is on tracers (isotropic stress)
Material_2_porosity=0.05 ## initial porosity (default=0.0)
## NB: initial porosity = 0 ensures that Bulk_visc is constant
Material_2_Bulk_visc=-1.e3 ## bulk visc ratio at initial porosity ( >1.0(2D), >2/3(3D) )
## bulk visc = ratio*visc (default=-1.0=infinite)
## div(v) + p/(bulk_visc-2/3*visc) = 0
## Colouring
Material_2_Red=0.8,0.52,0.52 ## RGB values for "cold" material (list one per PPM file)
Material_2_Green=0.2,0.9,0.9 ## ("hot" and "cold" are determined from T extremes)
Material_2_Blue=0.0,1.5,1.5
Material_2_Opacity=1.4,1.4,1.4 ## opacity for "cold" material (negative=off)
Material_2_Red_hot=0.9,.52,.52 ## values for "hot" material
Material_2_Green_hot=0.1,.9,.9
Material_2_Blue_hot=0.0,1.5,1.5
Material_2_Opacity_hot=1.4,1.4,1.4
Material_2_Red_strained=0.52,.52,.52 ## values for strained material
Material_2_Green_strained=0.90,.9,.9
Material_2_Blue_strained=1.5,1.5,1.5
Material_2_Opacity_strained=1.4,1.4,1.4
## Advanced
Material_2_reproduction=on ## allow tracer reproduction (default=on)
Material_2_phases=1 ## number of unique phases (first phase is phase 0) (default=1)
## then visc = { sum(1/visc_n) }^(-1)
Material_2_T_block=-1.e32 ## (blocking) T above which phase change can occur (default=-1.e32)
Material_2_rheol_cpts=1 ## number of rheological components (at least one per phase) (default=1)
## then visc = { sum(1/visc_n) }^(-1)
Material_2_Trange_min=-1.e8 ## temperature range to which rheology applies
Material_2_Trange_max=1.e8 ## (default=-1.e8,1.e8)
Material_2_rheol_phase=0 ## phase to which each rheology applies (start from 0) (default=0)
## Rheological model
Material_2_rheol_T_type=1 ## rheological temperature-dependence model (default=2)
## (1) visc=N0*exp(-T1*T) (Frank-Kamenetski)
## (2) visc=N0*exp{ (E+Z*z)/(T1*(T+T0)) } (Arrhenius)
## where z=depth
Material_2_viscN0=10 ## N0 in viscosity models (default=1.0)
Material_2_viscT1=0.0 ## T1 in viscosity models (default=1.0)
## Thermal parameters
Material_2_therm_exp=0.0 ## thermal expansion coefficient (default=0.0)
Material_2_therm_diff=1 ## thermal diffusivity (default=0.0)
Material_2_Cp=1 ## isobaric heat capacity (default=1.0)
Material_2_Qt=0.0 ## internal heating rate by mass (default=0.0)
## Stress-strain relationship
## stress = visc * (strain rate)
## post-yield visc = (yield stress)/(strain rate)
## yield stress = max{ (B0 + Bz*z + Bp*p) * f(e,edot) , minimum yield stress }
## yield stress = min{ (B0 + Bz*z + Bp*p) * f(e,edot) , maximum yield stress }
## yield stress = yield stress * 0.001, if (-p) > Bc
## e=strain, z=depth, p=pressure
## f(e,edot) = decreasing power law for 0 < e < E0 and 0 < edot < Edot0
## = constant for e > E0 and edot > Edot0
## f(e,edot) = 1 - (1-Ea)*(e/E0)^En - (1-Edota)*(edot/Edot0)^Edotn
Material_2_yield_stress_minimum=1.e-32 ## minimum yield stress for plastic deformation (default=1.e-32)
Material_2_yield_stress_maximum=1.e32 ## maximum yield stress for semi-brittle effect (default=1.e32)
Material_2_yield_stress_B0=1.e32 ## "cohesion" B0 in above eqn (default=1.e32)
#: Upper mantle lithosphere
## Novice
Material_3_density=3200 ## density (default=1.0)
Material_3_porosity=0.00 ## initial porosity (default=0.0)
## NB: initial porosity = 0 ensures that Bulk_visc is constant
Material_3_Bulk_visc=-1.e3 ## bulk visc ratio at initial porosity ( >1.0(2D), >2/3(3D) )
## bulk visc = ratio*visc (default=-1.0=infinite)
## div(v) + p/(bulk_visc-2/3*visc) = 0
Material_3_Bulk_modulus=0.0 ## B in dp = B*div(v)*dt (slightly compressible formulation)
## (default=0.0) where dp is on tracers (isotropic stress)
## Colouring
Material_3_Red=0.0,0.8 ## RGB values for "cold" material (list one per PPM file)
Material_3_Green=0.0,0.8 ## ("hot" and "cold" are determined from T extremes)
Material_3_Blue=2.0,1.1
Material_3_Opacity=1.4,1.4 ## opacity for "cold" material (negative=off)
Material_3_Red_hot=2,1.1 ## values for "hot" material
Material_3_Green_hot=0,0.8
Material_3_Blue_hot=0,0.8
Material_3_Opacity_hot=1.4,1.4
Material_3_Red_strained=0,0 ## values for strained material
Material_3_Green_strained=0,0
Material_3_Blue_strained=1,1
Material_3_Opacity_strained=0.2,0.2,1.4
## Advanced
Material_3_reproduction=on ## allow tracer reproduction (default=on)
Material_3_phases=1 ## number of unique phases (first phase is phase 0) (default=1)
## then visc = { sum(1/visc_n) }^(-1)
Material_3_T_block=-1.e32 ## (blocking) T above which phase change can occur (default=-1.e32)
Material_3_rheol_cpts=1 ## number of rheological components (at least one per phase) (default=1)
## then visc = { sum(1/visc_n) }^(-1)
Material_3_Trange_min=-1.e8 ## temperature range to which rheology applies
Material_3_Trange_max=1.e8 ## (default=-1.e8,1.e8)
Material_3_rheol_phase=0 ## phase to which each rheology applies (start from 0) (default=0)
## Rheological model
Material_3_rheol_T_type=1 ## rheological temperature-dependence model (default=2)
## (1) visc=N0*exp(-T1*T) (Frank-Kamenetski)
## (2) visc=N0*exp{ (E+Z*z)/(T1*(T+T0)) } (Arrhenius)
## where z=depth
Material_3_viscN0=1e5 ## N0 in viscosity models (default=1.0)
Material_3_viscT1=0 ## T1 in viscosity models (default=1.0)
Material_3_viscT0=0.0 ## T0 in Arhennius viscosity model (default=0.0)
Material_3_viscZ=0.0 ## Z in Arrhenius viscosity model (default=0.0)
Material_3_viscE=0.0 ## E in Arrhenius viscosity model (default=0.0)
Material_3_viscTmax=1.e32 ## maximum and minimum T to use in calculating viscosity
Material_3_viscTmin=0.0 ## (default=1.e32,0.0)
Material_3_sdepv_expt=1.0 ## exponent "s" in stress dependance of viscosity
## visc = edot^[(1-s)/s] * N0^(1/s) (default=1.0)
## Thermal parameters
Material_3_therm_exp=0.0 ## thermal expansion coefficient (default=0.0)
Material_3_therm_diff=1e-2 ## thermal diffusivity (default=0.0)
Material_3_Cp=1 ## isobaric heat capacity (default=1.0)
Material_3_Qt=0.0 ## internal heating rate by mass (default=0.0)
## Stress-strain relationship
## stress = visc * (strain rate)
## post-yield visc = (yield stress)/(strain rate)
## yield stress = max{ (B0 + Bz*z + Bp*p) * f(e,edot) , minimum yield stress }
## yield stress = min{ (B0 + Bz*z + Bp*p) * f(e,edot) , maximum yield stress }
## yield stress = yield stress * 0.001, if (-p) > Bc
## e=strain, z=depth, p=pressure
## f(e,edot) = decreasing power law for 0 < e < E0 and 0 < edot < Edot0
## = constant for e > E0 and edot > Edot0
## f(e,edot) = 1 - (1-Ea)*(e/E0)^En - (1-Edota)*(edot/Edot0)^Edotn
Material_3_yield_stress_minimum=1.e-32 ## minimum yield stress for plastic deformation (default=1.e-32)
Material_3_yield_stress_maximum=1.e32 ## maximum yield stress for semi-brittle effect (default=1.e32)
Material_3_yield_stress_B0=1e3 ## "cohesion" B0 in above eqn (default=1.e32)
Material_3_yield_stress_Bz=0.0 ## "friction coefficient" Bz in above eqn (default=0.0)
Material_3_yield_stress_Bp=0.2 ## "friction coefficient" Bp in above eqn (default=0.0)
Material_3_yield_stress_Bc=1.e32 ## tension cutoff Bc in above law (default=1.e32)
Material_3_yield_stress_Ea=0.2 ## ratio Ea = f(0,0)/f(E0,0) (default=1.0,range=[0,1])0
Material_3_yield_stress_E0=0.5 ## strain weakening E0 (default=1.e32)
Material_3_yield_stress_En=2.0 ## exponent En in f(e), e<E0 (default=0.0)
Material_3_yield_stress_Edota=1.0 ## ratio Edota = f(0,0)/f(0,Edot0) (default=1.0,range=[0,1])
Material_3_yield_stress_Edot0=0.0 ## strain rate weakening Edot0 (default=0.0)
Material_3_yield_stress_Edotn=0.0 ## exponent Edotn in f(e), edot<Edot0 (default=0.0)
Material_3_yield_stress_ET=1.e32 ## T above which strain weakening is reset (default=1.e32)
Material_3_yield_stress_E0dt=0.0 ## time rate of strain reduction (healing)
## de/dt = E0dt*e (default=0.0)
#: Asthenosphere
## Novice
Material_4_density=3200 ## density (default=1.0)
Material_4_Bulk_visc=-1.0 ## bulk visc ratio at initial porosity ( >1.0(2D), >2/3(3D) )
## bulk visc = ratio*visc (default=-1.0=infinite)
## div(v) + p/(bulk_visc-2/3*visc) = 0
Material_4_Bulk_modulus=0.0 ## B in dp = B*div(v)*dt (slightly compressible formulation)
## (default=0.0) where dp is on tracers (isotropic stress)
Material_4_porosity=0.0 ## initial porosity (default=0.0)
## NB: initial porosity = 0 ensures that Bulk_visc is constant
## Colouring
Material_4_Red=0.0,1.0,0.52 ## RGB values for "cold" material (list one per PPM file) ## EACH COLUMN IS FOR DIFFERENT FILES
Material_4_Green=0.0,0.0,0.9 ## ("hot" and "cold" are determined from T extremes)
Material_4_Blue=2.0,0.0,1.5
Material_4_Opacity=1.4,1.4,1.4 ## opacity for "cold" material (negative=off)
Material_4_Red_hot=2.0,1.0,.52 ## values for "hot" material
Material_4_Green_hot=0.0,1.0,.9
Material_4_Blue_hot=0.0,0.0,1.5
Material_4_Opacity_hot=1.4,1.4,1.4
Material_4_Red_strained=0.52,.52,.52 ## values for strained material
Material_4_Green_strained=0.90,.9,.9
Material_4_Blue_strained=1.5,1.5,1.5
Material_4_Opacity_strained=1.4,1.4,1.4
## Advanced
Material_4_reproduction=on ## allow tracer reproduction (default=on)
Material_4_phases=1 ## number of unique phases (first phase is phase 0) (default=1)
## then visc = { sum(1/visc_n) }^(-1)
Material_4_T_block=-1.e32 ## (blocking) T above which phase change can occur (default=-1.e32)
Material_4_rheol_cpts=1 ## number of rheological components (at least one per phase) (default=1)
## then visc = { sum(1/visc_n) }^(-1)
Material_4_Trange_min=-1.e8 ## temperature range to which rheology applies
Material_4_Trange_max=1.e8 ## (default=-1.e8,1.e8)
Material_4_rheol_phase=0 ## phase to which each rheology applies (start from 0) (default=0)
## Rheological model
Material_4_rheol_T_type=1 ## rheological temperature-dependence model (default=2)
## (1) visc=N0*exp(-T1*T) (Frank-Kamenetski)
## (2) visc=N0*exp{ (E+Z*z)/(T1*(T+T0)) } (Arrhenius)
## where z=depth
Material_4_viscN0=1000 ## N0 in viscosity models (default=1.0)
Material_4_viscT1=0.0 ## T1 in viscosity models (default=1.0)
## Thermal parameters
Material_4_therm_exp=1.0 ## thermal expansion coefficient (default=0.0)
Material_4_therm_diff=1 ## thermal diffusivity (default=0.0)
Material_4_Cp=1 ## isobaric heat capacity (default=1.0)
Material_4_Qt=1.0 ## internal heating rate by mass (default=0.0)
Material_4_depl_T_type=1 ##Depletion model, 1=pressure, 2=depth
Material_4_depl_exp=0.0 ##Density change of depleted material
Material_4_sp0=0.6 ## Solidus of material, based on third order
Material_4_sp1=2e-5 ## polynomial fit of data:
Material_4_sp2=0.0 ## s=sp0+sp1*p+sp2*p^2+sp3*p^3
Material_4_sp3=0.0
Material_4_lp0=0.75 ##Liquidus, defined same way
Material_4_lp1=2e-5
Material_4_lp2=0.0
Material_4_lp3=0.0
## Stress-strain relationship
## stress = visc * (strain rate)
## post-yield visc = (yield stress)/(strain rate)
## yield stress = max{ (B0 + Bz*z + Bp*p) * f(e,edot) , minimum yield stress }
## yield stress = min{ (B0 + Bz*z + Bp*p) * f(e,edot) , maximum yield stress }
## yield stress = yield stress * 0.001, if (-p) > Bc
## e=strain, z=depth, p=pressure
## f(e,edot) = decreasing power law for 0 < e < E0 and 0 < edot < Edot0
## = constant for e > E0 and edot > Edot0
## f(e,edot) = 1 - (1-Ea)*(e/E0)^En - (1-Edota)*(edot/Edot0)^Edotn
Material_4_yield_stress_minimum=1.e-32 ## minimum yield stress for plastic deformation (default=1.e-32)
Material_4_yield_stress_maximum=1.e32 ## maximum yield stress for semi-brittle effect (default=1.e32)
Material_4_yield_stress_B0=1.e32 ## "cohesion" B0 in above eqn (default=1.e32)