GPlates 2.0 software and data sets

GPlates 1.5 PromoGPlates is a free desktop software for the interactive visualisation of plate-tectonics. The compilation and documentation of GPlates 2.0 data was primarily funded by AuScope National Collaborative Research Infrastructure (NCRIS).

GPlates is developed by an international team of scientists and professional software developers at the EarthByte Project (part of AuScope) at the University of Sydney, the Division of Geological and Planetary Sciences (GPS) at CalTech, the Geodynamics team at the Geological Survey of Norway (NGU) and the Centre for Earth Evolution and Dynamics (CEED) at the University of Oslo. 

Data by the EarthByte Group is licensed under a Creative Commons Attribution 3.0 Unported License. Please cite the references listed on this page when using GPlates 2.0 data sets.

Download the latest version of GPlates here – link
View the latest GPlates user manual here – link
Download the latest GPlates tutorials here – link
Download standard file formats for GPlates here – link
Download list of plate IDs used in GPlates here – pdf
Read GPlates News, a quarterly update available here

GPlates-compatible data files – Features

Below is a list of GPlates-compatible data files that can be loaded seamlessly in GPlates. The feature data are available as .gpml (GPlates Markup Language), .dat (PLATES4), .shp (ESRI Shapefile) and .xy (lon, lat with header record) formats.

Feature File Source
EarthByte Global Rotation Model Download - zip file Data information
EarthByte Coastlines Download - zip file Data information
EarthByte Continental Polygons Download - zip file Data information
EarthByte Global Continent-Ocean Boundaries Download - zip file Data information
EarthByte Dynamic Polygons Download - zip file Data information
EarthByte Flowlines Download - zip file Data information
EarthByte Gridmarks Download - zip file Data information
EarthByte Hotspots Download - zip file Data information
EarthByte Isochron File Download - zip file Data information
EarthByte Paleomagnetic Data Download - zip file Data information
EarthByte Seafloor Fabric Download - zip file Data information
EarthByte Global Spreading Ridge File Download - zip file Data information
EarthByte Static Polygons Download - zip file Data information

GPlates-compatible data files – Rasters

Below is a list of GPlates-compatible present-day rasters and time-dependent raster images that can be loaded seamlessly in GPlates. The raster data are available as a series of jpgs.

Raster File Source
Global Present Day Agegrid Download - zip file Data information
Global Topography Download - zip file Data information
Global Free Air Gravity Anomalies Download - zip file Data information
Vertical Gravity Gradient (VGG) Download - zip file Data information
Global Magnetic Anomalies (WDMAM) Download - zip file Data information

Time-dependent Rasters

Raster File Source
Global Age-coded Slabs in P-wave Tomography Download - zip file Data information

Colour Palette (CPT) Files
Included in the GPlates sample data are six Generic Mapping Tools (GMT) compatible colour palettes that can be used in GPlates. These included seafloor age, feature age, isochrons and ridges and plate ID – categorical and regular.

About the GPlates 2.0 Sample Data

GPlates 2.0 is packaged with a range of sample data sets that allow users to quickly and easily get up-and-running with plate tectonic reconstructions.

The below information details the sources of these data and relevant citations. Data by the EarthByte Group is licensed under a Creative Commons Attribution 3.0 Unported License. When using GPlates and the sample data to make figures for publications, we recommend citing the original data sources as indicated below.

Feature Collections

EarthByte Global Rotation Model
The sample data includes the Matthews et al. (2016) rotation file, which contains a compilation of reconstruction poles that describe the motions of the continents and oceans. These rotations are a synthesis of many previous studies; each line in the rotation file lists the original source of the corresponding pole of rotation. Many of these original sources are listed within the Matthews et al. (2016) paper listed below.

The feature data provided (detailed below) are compatible with this rotation file.

Citation:

Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., and Müller, R. D., 2016, Global plate boundary evolution and kinematics since the late Paleozoic: Global and Planetary Change, DOI: 10.1016/j.gloplacha.2016.10.002.

Download EarthByte Global Rotation Model from the Features list


EarthByte Coastlines
GPlates CoastlinesThe coastline data is derived from the Global Self-consistent Hierarchical High-resolution Geography (GSHHG) dataset, Version 2.3.3. This dataset is an amalgamation of three databases in the public domain: World Vector Shorelines (WVS), CIA World Data Bank II (WDBII), Atlas of the Cryosphere (AC).

The GSHHS coastline data exists in five resolutions: full, high, intermediate, low and crude – each successively reduced by 80%. These will become available in PowerUser to be released at a later date.

In the Sample Data, the coastlines included are a simplified version of the high resolution GSHHS coastline. This simplification was done using ArcGIS with simplification tolerance of 0.05 decimal degrees (minimum Area: 100 Square km).

The simplified GSHHG polygon and polyline coastline have been made consistent with Matthews et al. (2016).
For more information on GSHHG click here.

Citations:

Bohlander, J. and Scambos, T. 2007. Antarctic coastlines and grounding line derived from MODIS Mosaic of Antarctica (MOA), Boulder, Colorado USA: National Snow and Ice Data Center.

Gorny, A. J. 1977. World Data Bank II General User GuideRep. PB 271869, 10pp, Central Intelligence Agency, Washington, DC.

Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., and Müller, R. D., 2016, Global plate boundary evolution and kinematics since the late Paleozoic: Global and Planetary Change, DOI: 10.1016/j.gloplacha.2016.10.002.

Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T. H., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., and Chandler, M. 2012. Global continental and ocean basin reconstructions since 200 Ma, Earth-Science Reviews, 113: 212-270, DOI: 10.1016/j.earscirev.2012.03.002.

Soluri, E. A., and Woodson, V. A. 1990. World Vector Shoreline, Int. Hydrograph. Rev., LXVII(1), 27-35.

Wessel, P., and Smith, W. H. F. 1996. A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophysical Res., 101(B4), 8741-8743.

Download EarthByte Coastlines from the Features list


EarthByte Continental Polygons
The continental polygons are a set of data containing the continental lithosphere only (consistent with the static polygons described below). These are consistent with Matthews et al. (2016).

Download EarthByte Continental Polygons from the Features list


EarthByte Global Continent-Ocean Boundaries
The present day Global Continent-Ocean Boundary (COB) Dataset from Müller et al. (2016) are represented as lines along passive margins and do not include active margins. The timescale used is Gee and Kent (2007). The COBs are consistent with Matthews et al. (2016).

Citation:

Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J. & Cannon, J. 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup, Annual Review of Earth and Planetary Sciences, vol. 44, pp. 107 . DOI: 10.1146/annurev-earth-060115-012211.

Download EarthByte Continent-Ocean Boundaries from the Features list


EarthByte Dynamic Polygons
A topological network of plate polygons with dynamic geometries are provided for the last 410 Ma. These data are provided in gpml (GPlates native) format and so require GPlates to be effectively visualised. Further information of this collection of data can be found here. The Dynamic polygons are consistent with Matthews et al. (2016).

Download EarthByte Dynamic Polygons from the Features list


EarthByte Flowlines
GPlates FlowlinesThis directory contains examples of plate motion “flowlines” across the Atlantic Ocean that have been generated in GPlates. The directory contains a .gpml file which contains seed points at several locations along the Mid-Atlantic Ridge. When loaded with a rotation file the flowlines will be drawn to reflect the relative motion between the plate pair either side of the mid ocean ridge.

The flowlines will be reconstructed according to the rotation file that is loaded when they are opened but were created using a ridge axis location that is consistent with Matthews et al. (2016).

Download EarthByte Flowlines from the Features list


EarthByte Grid Marks
The grid marks included in the Sample Data have been cookie-cut using the Matthews et al. (2016) model.

Download EarthByte Grid Marks from the Features list


EarthByte Hotspots
GPlates HotspotsThe hotspot/plume locations are represented as points and are split in Pacific and Indo/Atlantic domains. Locations were compiled from Montelli et al. (2004), Courtillot et al. (2003), Steinberger et al. (2000) and Anderson and Schramm (2005). Plumes closer than 500 km were combined into an averaged location.

Citation:

Whittaker, J. M., Williams, S. E., Masterton, S. M., Afonso, J. C., Seton, M., Landgrebe, T.C., Coffin, M.F., Müller, R.D. 2013. Interactions among plumes, mantle circulation and mid-ocean ridges, AGU Fall Meeting Abstracts.

Download EarthByte Hotspots from the Features list


EarthByte Isochron File
This directory contains the Müller et al. (2016) Ocean Floor Isochron Dataset. The isochrons are represented as lines and do not include reconstructed isochrons. The timescale used is Gee and Kent (2007). They are consistent with Matthews et al. (2016).

Citation:

Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J. & Cannon, J. 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup, Annual Review of Earth and Planetary Sciences, vol. 44, pp. 107 . DOI: 10.1146/annurev-earth-060115-012211.

Download EarthByte Isochron File from the Features list


EarthByte Paleomagnetic Data
GPlates PaleomagnetismThe paleomagnetism data sets are from the IAGA Global Paleomagnetic Database. The data are provided in GMAP VGP format, and GPML format. Both file formats can be read by GPlates.

Citation:

Torsvik, T.H., Müller, R.D., Van der Voo, R., Steinberger, B. and Gaina, C., 2008. Global Plate Motion Frames: Toward a unified model. Reviews of Geophysics, 46, RG3004, doi:10.1029/2007RG000227.

Download EarthByte Paleomagnetic Data from the Features list


EarthByte Seafloor Fabric
GPlates Seafloor FabricThe ‘SeafloorFabric’ folder within the sample data contains a set of geometries that define the tectonic fabric of the world’s oceans. The data are taken from a global community data set of fracture zones (FZs), discordant zones, propagating ridges, V-shaped structures and extinct ridges, digitized from vertical gravity gradient (VGG) maps. More information on the tectonic fabric of the ocean basins can be found here.

Download EarthByte Seafloor Fabric from the Features list

Citation:
Matthews, K. J., Müller, R. D., Wessel, P., Whittaker, J. M. 2011. The tectonic fabric of the ocean basins, The Journal of Geophysical Research. Doi: 10.1029/2011JB008413.


EarthByte Global Spreading Ridge File
The Matthews et al. (2016) spreading ridge dataset includes present day spreading ridges and extinct ridges, which are represented as lines. The timescale used is Gee and Kent (2007).

Citation:

Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J. & Cannon, J. 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup, Annual Review of Earth and Planetary Sciences, vol. 44, pp. 107 . DOI: 10.1146/annurev-earth-060115-012211.

Download EarthByte Global Spreading Ridge File from the Features list


EarthByte Static Polygons
GPlates Plate PolygonsStatic polygons allow plate IDs to be assigned to other sets of data and to reconstruct raster data. These polygons, and the set of isochrons defining the age of the ocean floor.

Citation:

Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J. & Cannon, J. 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup, Annual Review of Earth and Planetary Sciences, vol. 44, pp. 107 . DOI: 10.1146/annurev-earth-060115-012211.

Download EarthByte Static Polygons from the Features list


Rasters

Note: the resolution of the provided rasters has been limited to reduce the file size of the GPlates package. The original data sets are available in higher resolutions from links provided.

Global Present Day Agegrid
GPlates AgeGridThe sample data includes a 6-minute resolution grid of the age of the world’s ocean crust is produced by the EarthByte group. This grid is an update of the Müller et al. (2008) agegrid that is consistent with the Müller et al. (2016) model.

Citation:

Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J. & Cannon, J. 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup, Annual Review of Earth and Planetary Sciences, vol. 44, pp. 107 . DOI: 10.1146/annurev-earth-060115-012211.

Download Global Present Day Agegrid from the Rasters list


Global Topography
GPlates ETOPO1The color image of the ETOPO1 global relief model is available from the National Geophysical Data Center (NGDC). More information, and the original data in a variety of grid formats, can be found here.

Citation:
Amante, C. and Eakins, B. W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19.

Download Global Topography from the Rasters list


Global Free Air Gravity Anomalies and Vertical Gravity Gradient (VGG)
GPlates GravThe image of free air gravity is generated from Sandwell et al. (2014) and from the Danish National Space Centre (DNSC). In ploar regions, north of 80N and south of 80S the gravity anomalies are from the DNSC08. For latitudes within +/- 80 degrees, the gravity model of Sandwell et al. (2014) is used. The Vertical Gravity Gradient (VGG) grid is from Sandwell et al. (2014).

More information, as well as the original data sets in their full resolution, can be found here for the DNSC and here for Sandwell et al. (2014).

Citations:

Sandwell, D. T., Müller, R. D., Smith, W. H. F., Gracia, E. and Francis, E. 2014. New global marine gravity field model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, Vol. 346 (6205), pp. 65-67. Doi: 10.1126/science.1258213.

Andersen, O. B., Knudsen, P. and Berry, P. 2010. The DNSC08GRA global marine gravity field from double retracked satellite altimetry, Journal of Geodesy, Volume 84, Number 3. DOI: 10.1007/s00190-009-0355-9.

Andersen, O. B., 2010. The DTU10 Gravity field and Mean sea surface. Second international symposium of the gravity field of the Earth (IGFS2), Fairbanks, Alaska.

Download Global Free Air Gravity Anomalies and/or VGG from the Rasters list


Global Magnetic Anomalies (WDMAM)
The World Magnetic Anomaly Map (WDMAM) project integrates all available near-surface and satellite magnetic anomaly data into a single gridded data set. More information, and the original data at full resolution, can be found here.

Citation:

Maus, S., Sazonova T., Hemant K., Fairhead J.D. & Ravat D. 2007. National Geophysical Data Center candidate for the World Digital Magnetic Anomaly Map. Geophysics Geochemistry Geosystems, 8, Q06017. doi:10.1029/2007GC001643

Download Global Magnetic Anomalies from the Rasters list


Time-dependent Rasters

mitp_tomography_66ma

Global Age-coded Slabs in P-wave Tomography
A time-dependent series of jpgs are provided that apply a constant and vertical slab sinking rate of 3 cm/yr in the upper mantle, and 1.2 cm/yr in the lower mantle. This sinking rate has been applied as an estimate to study the Tethyan and Asian subduction zones, but is likely also applicable elsewhere. Only the fast seismic velocities (i.e., cold dense slabs) are plotted, and the scale is below and in the sample data. The P-wave seismic tomography model is that of Li et al. (2008) and is often referred to as MITP-08 or MIT-P.

Time-dependent_MIT-P08_legend

Citation:
Li, C., van der Hilst, R., Engdahl, E. and Burdick, S., 2008. A new global model for P wave speed variations in Earth’s mantle. Geochemistry, Geophysics, Geosystems, 9(5): 21, doi: 10.1029/2007GC001806.

Download Global Age-coded Slabs in P-wave Tomography