A global dataset of present-day oceanic crustal age and seafloor spreading parameters

Abstract: We present an updated oceanic crustal age grid and a set of complementary grids including spreading rate, asymmetry, direction and obliquity. Our dataset is based on a selected set of magnetic anomaly identifications and the plate tectonic model of Müller et al. (2019). We find the mean age of oceanic crust is 64.2 Myrs, … Read more…

Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure

Abstract: A major topic of debate in Earth and climate science surrounds the timing of closure of the Central American Seaway. While it is clear that the gateway was closed by ~2.8 Ma, recent studies based on geological and marine molecular evidence have suggested an earlier closing time of early to mid-Miocene. Here, we examine … Read more…

Sea level fluctuations driven by changes in global ocean basin volume following supercontinent break-up

Abstract: Long-term variations in eustatic sea level in an ice-free world, which existed through most of the Mesozoic and early Cenozoic eras, are partly driven by changes in the volume of ocean basins. Previous studies have determined ocean basin volume changes from plate tectonic reconstructions since the Mesozoic; however, these studies have not considered a … Read more…

A Quantitative Tomotectonic Plate Reconstruction of Western North America and the Eastern Pacific Basin

Abstract: Plate reconstructions since the breakup of Pangaea are mostly based on the preserved spreading history of ocean basins, within absolute reference frames that are constrained by a combination of age-progressive hotspot tracks and palaeomagnetic data. The evolution of destructive plate margins is difficult to constrain from surface observations as much of the evidence has … Read more…

PyGPlates now supports Python 3

PyGPlates now supports Python 3.  You can download pyGPlates:   http://www.gplates.org/download.html What’s new in pyGPlates revision 28:- Windows and macOS support for Python 2.7, 3.5, 3.6, 3.7 and 3.8. macOS libraries signed and notarized by Apple (should no longer get security prompts). Ubuntu support for 16.04 LTS (Xenial), 18.04 LTS (Bionic), 19.10 (Eoan) and 20.04 LTS (Focal). Create topological features (dynamic … Read more…

PyBacktrack 1.3 now available as a Python package and a Docker image.

PyBacktrack 1.3 is now available as a Python package and a Docker image. The documentation is available at: https://pybacktrack.readthedocs.io/en/latest/ Changes since version 1.2: Supports Python 3: please also use the recent pyGPlates Python 3 release. Added the following output columns: dynamic_topography: change in dynamic topography elevation since present day decompacted_depth: depth from fully decompacted layers (using surface porosity only) … Read more…

GPlates Portal passes 1 million views!

Just in time for science week, our #AuScope supported GPlates Portal has passed 1 million views! The most popular globe remains the vertical gravity gradient globe which highlights the Earth’s lithospheric structure, followed by our seafloor lithology globe. For #ScienceWeek our portal guru Michael Chin has created a new globe for reconstructing the SRTM15 digital elevation model. Check it … Read more…

GPlates x Digital Directory: re-linking people with earth system science in an opportune moment of pause

COVID-19 has stimulated both major behavioural change during lockdown; and new thoughts, experiments and even dreams as many of our human-created systems have come to a raging halt. As the traffic dims, we have the opportunity to ‘remind ourselves that we are embedded in a more-than-human world — and have some fun along the way … Read more…

Paper in Geological Society London Memoirs: Geodynamics of the SW Pacific: a brief review and relations with New Caledonian geology

A book chapter in: New Caledonia: Geology, Geodynamic Evolution and Mineral Resources. Geological Society, London, Memoirs, 51, 13–26, https://doi.org/10.1144/M51-2018-5 has finally been published. The book chapter, which gives a brief overview of the geodynamics of New Caledonia, was a collaboration between colleagues from New Caledonia, New Zealand, Australia and France. Abstract below: The SW Pacific … Read more…

Update to the Muller et al. (2019) plate reconstructions

The GPlates team has updated the relative and absolute plate motions in the Muller et al. (2019) reconstructions.  The details of the updates are summarised below. Version 2.0 of the model (including GPlates files, age-grids, global and regional animations, stretching factor grids, etc.) are available to download from this link. The Muller et al. (2019) … Read more…

Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data

Abstract: The extraction of tectonic lineaments from digital satellite data is a fundamental application in remote sensing. The location of tectonic lineaments such as faults and dykes are of interest for a range of applications, particularly because of their association with hydrothermal mineralization. Although a wide range of applications have utilized computer vision techniques, a … Read more…

The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic

Abstract: Global sea level change can be inferred from sequence stratigraphic and continental flooding data. These methods reconstruct sea level from peri-cratonic and cratonic basins that are assumed to be tectonically stable and sometimes called reference districts, and from spatio-temporal correlations across basins. However, it has been understood that long-wavelength (typically hundreds of km) and low-amplitude … Read more…

Constraining Absolute Plate Motions Since the Triassic

Abstract: The absolute motion of tectonic plates since Pangea can be derived from observations of hotspot trails, paleomagnetism, or seismic tomography. However, fitting observations is typically carried out in isolation without consideration for the fit to unused data or whether the resulting plate motions are geodynamically plausible. Through the joint evaluation of global hotspot track … Read more…

Bayeslands: A Bayesian inference approach for parameter uncertainty quantification in Badlands

Abstract: Bayesian inference provides a rigorous methodology for estimation and uncertainty quantification of unknown parameters in geophysical forward models. Badlands is a landscape evolution model that simulates topography development at various space and time scales. Badlands consists of a number of geophysical parameters that needs estimation with appropriate uncertainty quantification; given the observed present-day ground truth … Read more…

Decoding earth’s plate tectonic history using sparse geochemical data

Abstract: Accurately mapping plate boundary types and locations through time is essential for understanding the evolution of the plate-mantle system and the exchange of material between the solid Earth and surface environments. However, the complexity of the Earth system and the cryptic nature of the geological record make it difficult to discriminate tectonic environments through … Read more…

Modeling geochemical anomalies of stream sediment data through a weighted drainage catchment basin method for detecting porphyry Cu-Au mineralization

Abstract: Stream sediment surveying is a geochemical sampling method which is typically applied in the preliminary stages of mineral prospecting. Both continuous and discrete mapping approaches have been proposed to delineate geochemical anomalies at large scales using stream sediment samples. We aim to enhance the efficiency of a recent discrete mapping method called Weighted Drainage … Read more…

Tectonic, geodynamic and surface process driving forces of Australia’s paleogeography since the Jurassic

Abstract: Today the eastern highlands of Australia are significantly more elevated than western Australia, but the continent’s geodynamic evolution suggests that the opposite was the case during Cretaceous times, when the Eromanga Sea dominated the eastern Australian landscape. Previous geodynamic and surface processes models have been used to simulate the evolution of this seaway, but … Read more…

Deep Carbon Cycling Over the Past 200 Million Years: A Review of Fluxes in Different Tectonic Settings

Abstract: Carbon is a key control on the surface chemistry and climate of Earth. Significant volumes of carbon are input to the oceans and atmosphere from deep Earth in the form of degassed CO2 and are returned to large carbon reservoirs in the mantle via subduction or burial. Different tectonic settings (e.g., volcanic arcs, mid-ocean … Read more…

GPlates 2.2 software and data sets

GPlates Title Logo

GPlates 1.5 PromoGPlates is a free desktop software for the interactive visualisation of plate-tectonics. The compilation and documentation of GPlates 2.2 data was primarily funded by AuScope National Collaborative Research Infrastructure (NCRIS).

GPlates is developed by an international team of scientists and professional software developers at the EarthByte Project (part of AuScope) at the University of Sydney, the Division of Geological and Planetary Sciences (GPS) at CalTech, the Geodynamics team at the Geological Survey of Norway (NGU) and the Centre for Earth Evolution and Dynamics (CEED) at the University of Oslo. … Read more…

Share

PyBacktrack 1.1 has been released as Python package and Docker image

PyBacktrack is a Python package that backtracks the paleo-water depth of ocean drill sites through time by combining a model of tectonic subsidence with decompaction of the site stratigraphic lithologies. PyBacktrack can also include the effects of mantle-convection driven dynamic topography on paleo-water depth, as well as sea-level variations. PyBacktrack provides a model of tectonic … Read more…

Muller et al. (2019) deforming plate reconstructions and associated digital supplements (Tectonics)

A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic R. Dietmar Müller, Sabin Zahirovic, Simon E. Williams, John Cannon, Maria Seton, Dan J. Bower, Michael G. Tetley, Christian Heine, Eline Le Breton, Shaofeng Liu, Samuel H. J. Russell, Ting Yang, Jonathon Leonard, and Michael Gurnis Journal: Tectonics (open access) … Read more…

How Earth’s continents became twisted and contorted over millions of years

Dietmar Muller, Maria Seton and Sabin Zahirovic published an article in The Conversation on How Earth’s continents became twisted and contorted over millions of years based on their recently published paper in Tectonics. Classical plate tectonic theory was developed in the 1960s. It proposed that the outer layer of our planet is made up of a small number of rigid … Read more…

The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic

Abstract: Global sea level change can be inferred from sequence stratigraphic and continental flooding data. These methods reconstruct sea level from peri-cratonic and cratonic basins that are assumed to be tectonically stable and sometimes called reference districts, and from spatio-temporal correlations across basins. However, it has been understood that long-wavelength (typically hundreds of km) and … Read more…

AuScope reviews innovations of the ARC Basin Genesis HUB

Sedimentary basins around the world are critical to sustaining modern life on Earth. These basins can be thought of as containers that hold water, minerals, energy, and can potentially be used to store carbon dioxide. Unpacking how they form, and where those resources and storage opportunities may lie is a sizeable feat for the best … Read more…

GPlates-in-schools!

Maria Seton attended Marist College North Shore (Sydney) earlier this week and gave a presentation on “computerised simulations and models of the Earth’s geological history” to a keen group of senior science students. Part of this presentation involved leading a hands-on GPlates activity with the students (see photo). It was a hit and seeing plate … Read more…

Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous

Citation: Dutkiewicz, Adriana & Müller, Dietmar & Cannon, John & Vaughan, Sioned & Zahirovic, Sabin. (2018). Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous. Geology. 10.1130/G45424.1. Abstract Deep-sea carbonate represents Earth’s largest carbon sink and one of the least-known components of the long-term carbon cycle that is intimately linked … Read more…

Interactive virtual gravity globe, based on BGI’s global gravity grids by Bonvalot et al. (2012)

Ready for a fresh start in 2019, our web development guru Michael Chin has created a new interactive virtual gravity globe, based on BGI’s global gravity grids by Bonvalot et al. (2012). The virtual globe allows the user to visualise either Bouguer or isostatic gravity anomalies. The latter has both the effect of surface and … Read more…

Two New Sloan Foundation Grants for Deep Carbon Science

The Alfred P. Sloan Foundation recently announced two new Officer’s Grants for deep carbon science, supporting important community building and modeling efforts. These new projects will invigorate a community of scientists committed to understanding the evolution of deep carbon through deep time through 2019 and beyond. “Carbon Down Under: Galvanizing Australia’s research community for the … Read more…

New interactive rift obliquity globe on the GPlates Portal

The ARC Basin Genesis Hub has made a new interactive rift obliquity globe available on the GPlates Portal at http://portal.gplates.org/cesium/?view=rift_ov, based on a recently published paper entitled “Oblique rifting: the rule, not the exception” in Solid Earth. This virtual globe visualizes extension velocities and obliquities within Earth’s major post-Pangea rift systems. Each circle depicts the … Read more…