Rift and plate boundary evolution across two supercontinent cycles

Citation: Merdith, Andrew & Williams, Simon & Brune, Sascha & Collins Alan, S & Müller, Dietmar. (2018). Rift and plate boundary evolution across two supercontinent cycles. Global and Planetary Change. 173. 10.1016/j.gloplacha.2018.11.006. Abstract The extent of continental rifts and subduction zones through deep geological time provides insights into the mechanisms behind supercontinent cycles and the long term evolution of the mantle. … Read more…

Rift and plate boundary evolution across two super-continent cycles

Abstract The extent of continental rifts and subduction zones through deep geological time provides insights into the mechanisms behind supercontinent cycles and the long term evolution of the mantle. However, previous compilations have stopped short of mapping the locations of rifts and subduction zones continuously since the Neoproterozoic and within a self-consistent plate kinematic framework. … Read more…

Kinematic constraints on the Rodinia to Gondwana transition

Author List: Andrew Merdith, Simon Williams, Dietmar Müller & Alan Collins. Citation: Merdith, Andrew & Williams, Simon & Müller, Dietmar & Collins, Alan. (2017). Kinematic constraints on the Rodinia-Gondwana transition. Precambrian Research. 299. . 10.1016/j.precamres.2017.07.013. Abstract: Earth’s plate tectonic history during the breakup of the supercontinent Pangea is well constrained from the seafloor spreading record, but evolving plate configurations during … Read more…

Earth is estimated to be around 4.5 billion years old, with life first appearing around 3 billion years ago.

EarthByter Andrew Merdith, Alan Collins from the Univ. of Adelaide and colleagues produced an animated plate tectonic map that changes the history of our planet as we know it. Of course it’s not just an animation, it’s an elaborate computer model that took years to be built, assimilating tons of geological and geophysical observations, in a … Read more…