Nature Communications: Coupled influence of tectonics, climate, and surface processes on landscape evolution in southwestern North America

The Cenozoic landscape evolution in southwestern North America is ascribed to crustal isostasy, dynamic topography, or lithosphere tectonics, but their relative contributions remain controversial. Here we reconstruct landscape history since the late Eocene by investigating the interplay between mantle convection, lithosphere dynamics, climate, and surface pro- cesses using fully coupled four-dimensional numerical models. Our quantified … Read more…

Predicting the emplacement of Cordilleran porphyry copper systems using a spatio-temporal machine learning model

Porphyry copper (Cu) systems occur along magmatic belts derived in subduction zones. Our current under- standing of their formation is restricted to observations from the overriding plate, resulting in a knowledge gap in terms of processes occurring in convergence zones through time. An association between key tectonic processes and the timing and location of porphyry … Read more…