Nature Communications: Deep-sea hiatus record reveals orbital pacing by 2.4 Myr eccentricity grand cycles

Astronomical forcing of Earth’s climate is embedded in the rhythms of stratigraphic records, most famously as short-period (10^4–10^5 year) Milankovitch cycles. Astronomical grand cycles with periods of millions of years also modulate climate variability but have been detected in relatively few proxy records. Here, we apply spectral analysis to a dataset of Cenozoic deep-sea hiatuses … Read more…

When the Earth warms, the ocean speeds up

Sixty-six million years of geological data suggests that heating makes ocean currents stronger. By Ellen McPhiddian, Cosmos Ocean currents play a big role in floods, droughts, and other large-scale weather patterns. We know that ocean circulation will be affected by global warming – but figuring out exactly how it will be affected is much more difficult. Will there be … Read more…

Geology: Deep-sea hiatuses track the vigor of Cenozoic ocean bottom currents

The deep-sea stratigraphic record is full of gaps. These hiatuses track changes in ocean circulation and chemistry, but determining their timing and causes has been limited by sparse data and incomplete knowledge of ocean gateway evolution in earlier studies. We combine a significantly expanded, age-calibrated deep-sea stratigraphic database with a global tectonic and paleo–water depth … Read more…