PLOS ONE – The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser

Müller, R. D., Qin, X., Sandwell, D. T., Dutkiewicz, A., Williams, S. E., Flament, N., Maus, S., & Seton, M. (2016). The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser. PLoS ONE, 11(3), e0150883. doi: 10.1371/journal.pone.0150883 The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data … Read more…

GPlates Portal International Media Coverage

gravity_grid_180my_agoThe recent article on the GPlates Portal published in PLOS ONE by Prof Dietmar Müller, Xiaodong Qin, Prof David Sandwell, Dr Adriana Dutkiewicz, Dr Simon Williams, Dr Nicolas Flament, Dr Stefan Maus, and Dr Maria Seton, has received significant international media attention over the past week, featuring in articles from Australia, UK, US, India, and UAE!

See the list of online media below, and check out the interactive globes yourself!

Read more…

EarthByte/Scripps research features on NASA Earth Observatory

Triplejunction gis 2014 (Copyright NASA Earth Observatory)

NASA Earth Observatory features a piece on the recent Mammerickx Microplate discovery. Their Image of the Day for 13 January 2016 is a satellite gravity map of the Indian Ocean, and the associated article, entitled ‘New Seafloor Map Helps Scientists Find New Features‘, discusses the power of satellite data for seafloor mapping and details the … Read more…

Earth and Planetary Science Letters – Oceanic microplate formation records the onset of India–Eurasia collision

Mammerickx Microplate zoom

Matthews, K. J., Müller, R. D., & Sandwell, D. T. (2016). Oceanic microplate formation records the onset of India–Eurasia collision. Earth and Planetary Science Letters, 433, 204-214. Oceanic microplate formation records the onset of India–Eurasia collision

Mammerickx Microplate media coverage

Mammerickx Microplate zoom

Mammerickx Microplate zoomThe recent EPSL article on the discovery of the Mammerickx Microplate, by Dr Kara Matthews, Prof Dietmar Müller and Prof David Sandwell, has received lots of media attention from many different countries around the world including Australia, UK, USA, India, Pakistan, Mexico, Nepal and Honduras.

See below for a list of media items:

Online Media
The biggest continental collision in Earth’s history: Scientists pinpoint crashing together of continents that created the Himalayas 50 million years ago – Daily Mail
Scientists fix date for earth-shattering Himalayan birth pangs – The Sydney Morning Herald
Microplate discovery dates birth of Himalayas – EurekAlert!
Himalayas: Discovery of first ancient Indian Ocean microplate hints at new date of formation of mountain range – Yahoo! News  … Read more…

Ancient Indian Ocean microplate discovery dates birth of Himalayas

Mammerickx Microplate

Mammerickx MicroplateAn international team of scientists led by the University of Sydney’s School of Geosciences has discovered that the crustal stresses caused by the initial collision between India and Eurasia cracked the Antarctic Plate far away from the collisional zone and broke off a fragment the size of Tasmania in a remote patch of the central Indian Ocean.

The ongoing tectonic collision between the two continents produces enormous geological stresses that build up along the Himalayas and lead to numerous earthquakes every year – but now scientists have unravelled how stressed the Indian Plate became 47 million years ago when its northern edge first collided with Eurasia. … Read more…

Nature Geoscience – Deformation-related volcanism in the Pacific Ocean linked to the Hawaiin-Emperor bend

O’Connor, J. M., Hoernle, K., Müller, R. D., Morgan, J. P., Butterworth, N. P., Hauff, F., … & Stoffers, P. (2015). Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian-Emperor bend. Nature Geoscience, 8(5), 393-397. doi: 10.1038/NGEO2416. Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian–Emperor bend

Science – New global marine gravity model from Cryo-Sat-2 and Jason-1 reveals buried tectonic structure

Sandwell, D. T., Müller, R. D., Smith, W. H., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. science, 346(6205), 65-67. doi: 10.1126/science.1258213.

New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure

Download supplementary material – pdf

Read more…

New global marine gravity model, Sandwell et al. (2014)

Indian Ocean View Westward from AustraliaCitation
Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E. and Francis, R. 2014. New global marine gravity model from Cryo-Sat-2 and jason-1 reveals buried tectonic structure. Science, Vol. 346, 6205, pp. 65-67, doi: 10.1126/science.1258213.

Summary
New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure.

View the new gravity map in an online 3D portal!

Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a … Read more…