Regional volcanism of northern Zealandia: post-Gondwana break-up magmatism on an extended, submerged continent

Abstract Abstract: Volcanism of Late Cretaceous–Miocene age is more widespread across the Zealandia continent than previously recognized. New age and geochemical information from widely spaced northern Zealandia seafloor samples can be related to three volcanotectonic regimes: (1) age-progressive, hotspot-style, low-K, alkali-basalt-dominated volcanism in the Lord Howe Seamount Chain. The northern end of the chain (c. … Read more…

No Change in Southern Ocean Circulation in the Indian Ocean From the Eocene Through Late Oligocene

Author List: Nicky M. Wright , Howie D. Scher , Maria Seton , Claire E. Huck , and Brian D. Duggan Citation: Wright, N. M., Scher, H. D., Seton, M., Huck, C. E., & Duggan, B. D. (2018). No change in Southern Ocean circulation in the Indian Ocean from the Eocene through late Oligocene. Paleoceanography … Read more…

RV Investigator voyage funded!

Congratulations to EarthByters Maria Seton (applicant) and Simon Williams, Jo Whittaker (Chief Scientist, UTas) and the rest of the team for their successful application for ship time on Australia’s national marine vessel, the RV Investigator! The 28 day voyage will set sail in August 2019 to investigate hotspot dynamics in the Coral Sea. One of … Read more…

EarthByte Honours and Masters Projects 2018

EarthByte globe icon

EarthByte has now released a list of Honours/Masters projects to be offered in 2018. These projects are outlined below. Project Title Supervisor(s) Dynamic Earth models, landscape dynamics and basin evolution in Australasia Dietmar Müller, Sabin Zahirovic, Tristan Salles, Rohit Chandra, Sally Cripps (Centre for Translational Data Science) Incorporating modern plate tectonic reconstructions into box models of the deep-time deep-Earth … Read more…

The Encyclopedia of Marine Geosciences

The Encyclopedia of Marine Geosciences was selected for the 2017 Mary B. Ansari Best Geoscience Research Resource Work Award of The Geoscience Information Society (GSIS). The formal award will be given at the GSA 2017 conference in October in Seattle/USA. EarthByters Dietmar Muller and Maria Seton contributed two chapters on “Paleophysiography of Ocean Basins” and “Plate Motion”. This Encyclopedia … Read more…

Tectonic speed limits from plate kinematic reconstructions

Abstract The motion of plates and continents on the planet’s surface are a manifestation of long-term mantle convection and plate tectonics. Present-day plate velocities provide a snapshot of this ongoing process, and have been used to infer controlling factors on the speeds of plates and continents. However, present-day velocities do not capture plate behaviour over … Read more…

Zealandia: Earth’s Hidden Continent

ZealandiaA paper published in GSA Today, Zealandia: Earth’s Hidden Continent, by Nick Mortimer and colleagues, including EarthByte’s Dr Maria Seton, has gone viral over the last few days. In the paper, researchers have for the first time clearly defined Zealandia, a continent that includes New Zealand, New Caledonia, and the Lord Howe and Norfold Islands, that is today 94% submerged beneath the Pacific Ocean. According to GSA Today’s editors, the article is “by a long shot” their most downloaded article ever. Picked up by hundreds of media outlets worldwide, the findings of the paper has reached an estimated 720 million readers!

You can download the paper here. … Read more…

Share

Global plate boundary evolution and kinematics since the late Paleozoic

Author List: Kara Matthews, Kayla Maloney, Sabin Zahirovic, Simon Williams, Maria Seton and Dietmar Müller. Citation: Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., and Müller, R.D. (2016). Global plate boundary evolution and kinematics since the late Paleozoic, Global and Planetary Change, 146, 226-250. Abstract: Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep … Read more…

Global plate boundary evolution and kinematics since the late Paleozoic

Matthews++_SummaryFigCitation

Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., and Müller, R.D. (2016). Global plate boundary evolution and kinematics since the late Paleozoic, Global and Planetary Change, 146, 226-250. DOI: 10.1016/j.gloplacha.2016.10.002

Abstract

Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410–250 Ma) and Mesozoic-Cenozoic (230–0 Ma). We ensure continuity during the 250–230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410–0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement.

Read more…

Share

Large fluctuations of shallow seas in low-lying Southeast Asia driven by mantle flow

Author List: Sabin Zahirovic, Nicolas Flament, Dietmar Müller, Maria Seton, Mike Gurnis. Citation: Zahirovic, S., Flament, N., Müller, R.D., Seton, M., and Gurnis, M. (2016). Large fluctuations of shallow seas in low-lying Southeast Asia driven by mantle flow. Geochemistry, Geophysics, Geosystems. doi:10.1002/2016GC006434 The Sundaland continental promontory, as the core of Southeast Asia, is one of the lowest lying … Read more…

Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup

Author List: Dietmar Müller, Maria Seton, Sabin Zahirovic, Simon Williams, Kara Matthews, Nicky Wright, Grace Shephard, Kayla Maloney, Nicholas Barnett-Moore, Maral Hosseinpour, Dan Bower and John Cannon. Citation: Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J., & Cannon, J. (2016). Ocean Basin Evolution and … Read more…

Subduction controls the distribution and fragmentation of Earth’s tectonic plates

Author List: Claire Mallard, Nicolas Coltice, Maria Seton, Dietmar Müller and Paul Tackley Citation: Mallard, C., Coltice, N., Seton, M., Müller, R. D. & Tackley, P. J. (2016). Subduction controls the distribution and fragmentation of Earth’s tectonic plates. Nature, 535, 140-143. doi:10.1038/nature17992 Abstract: Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate … Read more…

Solving Earth’s giant jigsaw puzzle of tectonic plates

plate-tesselation
Earth’s plate tesselation through time (150 Myr ago to present)

Plate tectonics drives earthquakes and volcanism, forms precious mineral deposits and controls the planet’s long-term carbon cycle.   But why do we have just a few large plates, and many tiny plates?  Does it matter? These questions have now been answered in a French-Swiss-Australian collaborative paper led by PhD student Claire Mallard at the Univ. Lyon, published on 15 June 2016 in the journal Nature. The paper includes Nicolas Coltice (Lyon), EarthByters Dietmar Müller and Maria Seton, and Paul Tackley (ETH). 

... Read more...

Share

Tectonic evolution of Western Tethys from Jurassic to present day: coupling geological and geophysical data with seismic tomography models

Author List: Maral Hosseinpour, Simon Williams, Maria Seton, Nicholas Barnett-Moore and Dietmar Müller Citation: Hosseinpour, M., Williams, S., Seton, M., Barnett-Moore, N., and Müller, R.D. (2016). Tectonic evolution of Western Tethys from Jurassic to present day: coupling geological and geophysical data with seismic tomography models. International Geology Review 58 (13): 1616–1645. doi:10.1080/00206814.2016.1183146 Abstract: The geodynamic evolution of the … Read more…

PLOS ONE – The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser

Author List: Dietmar Müller, Xiaodong Qin, David Sandwell, Adriana Dutkiewicz, Simon Williams, Nicolas Flament, Stefan Maus, Maria Seton Citation: Müller, R. D., Qin, X., Sandwell, D. T., Dutkiewicz, A., Williams, S. E., Flament, N., Maus, S., & Seton, M. (2016). The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser. … Read more…

Earth-Science Reviews – The Late Cretaceous to recent tectonic history of the Pacific Ocean basin

Wright, N. M., Seton, M., Williams, S. E., & Müller, R. D. (2016). The Late Cretaceous to recent tectonic history of the Pacific Ocean basin. Earth-Science Reviews, 154, 138–173. http://dx.doi.org/10.1016/j.earscirev.2015.11.015 The Late Cretaceous to recent tectonic history of the Pacific Ocean basin 

GPlates Portal International Media Coverage

gravity_grid_180my_agoThe recent article on the GPlates Portal published in PLOS ONE by Prof Dietmar Müller, Xiaodong Qin, Prof David Sandwell, Dr Adriana Dutkiewicz, Dr Simon Williams, Dr Nicolas Flament, Dr Stefan Maus, and Dr Maria Seton, has received significant international media attention over the past week, featuring in articles from Australia, UK, US, India, and UAE!

See the list of online media below, and check out the interactive globes yourself!

Read more…

Share

Ocean basin evolution and global-scale plate reorganization events since Pangea breakup

Seafloor ages from Müller et al.

Seafloor ages from Müller et al.Citation
Müller R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J., Cannon, J., 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup, Annual Review of Earth and Planetary Sciences, Vol 44, 107-138. DOI: 10.1146/annurev-earth-060115-012211.

Abstract
We present a revised global plate motion model with continuously closing plate boundaries ranging from the Triassic at 230 Ma to the present day, assess differences between alternative absolute plate motion models, and review global tectonic events. Relatively high mean absolute plate motion rates around 9–10 cm yr-1 between 140 and 120 Ma may be related to transient plate motion accelerations driven by the successive emplacement of a sequence of large igneous provinces during that time. … Read more…

Share

Earth’s climate throughout the Phanerozoic

Eocene topo bath

Eocene topo bathProject Summary
EarthByte is involved in a series of projects aimed at understanding and modeling Earth’s climate throughout the Phanerozoic. Some of these projects include:

  • Future Fellowship of Maria Seton on “Oceanic gateways: a primary control on global climate change?”
  • Basin GENESIS Hub activities, related to the effect of the mantle, crustal deformation, erosion and sedimentary processes on sedimentary basins
  • ATOM – a coupled atmospheric-ocean circulation code jointly developed by Prof. Roger Grundmann and EarthByte.

EarthByte’s expertise in tectonics, geodynamics and surface process modeling is enhanced by close collaborations with leading palaeoclimate modellers and geochemical oceanographers.  … Read more…

Share

Earth's climate throughout the Phanerozoic

Eocene topo bath

Eocene topo bathProject Summary
EarthByte is involved in a series of projects aimed at understanding and modeling Earth’s climate throughout the Phanerozoic. Some of these projects include:

  • Future Fellowship of Maria Seton on “Oceanic gateways: a primary control on global climate change?”
  • Basin GENESIS Hub activities, related to the effect of the mantle, crustal deformation, erosion and sedimentary processes on sedimentary basins
  • ATOM – a coupled atmospheric-ocean circulation code jointly developed by Prof. Roger Grundmann and EarthByte.

EarthByte’s expertise in tectonics, geodynamics and surface process modeling is enhanced by close collaborations with leading palaeoclimate modellers and geochemical oceanographers.  … Read more…

Share

EarthByte’s plate tectonic animation added to NOAA’s SOS database

An EarthByte plate tectonic animation has recently been added to NOAA’s Science on a Sphere database. NOAA produces large interactive 3D spherical projection systems that are installed at museums, universities, schools and other institutes across the world (see Science On a Sphere map locations). The EarthByte animation is from the recent Gibbons et al. (2015) … Read more…

EarthByte's plate tectonic animation added to NOAA's SOS database

An EarthByte plate tectonic animation has recently been added to NOAA’s Science on a Sphere database. NOAA produces large interactive 3D spherical projection systems that are installed at museums, universities, schools and other institutes across the world (see Science On a Sphere map locations). The EarthByte animation is from the recent Gibbons et al. (2015) … Read more…

Plate reconstruction with ocean basin paleo-ages

A global animation accompanying the publication Global continental and ocean basin reconstructions since 200 Ma. Citation Seton, M., et al. (2012), Global continental and ocean basin reconstructions since 200 Ma, Earth-Science Reviews, 113(3-4), 212-270. doi: 10.1016/j.earscirev.2012.03.002. View the full playlist on our EarthByte YouTube channel

Plate reconstruction with paleo-bathymetry of the ocean basins

Reconstructions of tectonic plates and oceanic paleodepth (i.e. paleobathymetry). Citation Müller, R., M. Sdrolias, C. Gaina, and W. Roest (2008). Age, spreading rates, and spreading asymmetry of the world’s ocean crust, Geochemistry, Geophysics, Geosystems, 9(4), 19, Q04006. doi: 10.1029/2007GC001743. View the full playlist on our EarthByte YouTube channel

Nature Geoscience – Long-term interaction between mid-ocean ridges and mantle plumes

Whittaker, J. M., Afonso, J. C., Masterton, S., Müller, R. D., Wessel, P., Williams, S. E., & Seton, M. (2015). Long-term interaction between mid-ocean ridges and mantle plumes. Nature Geoscience, 8(6), 479-483. doi: http://dx.doi.org/10.1038/ngeo2437. Long-term interaction between mid-ocean ridges and mantle plumes Download supplementary materials – zip file

Long-term interaction between mid-ocean ridges and mantle plumes

Whittaker et al 2015 MORs plumes LIPSCitation
Whittaker, J. M., Afonso, J. C., Masterton, S., Müller, R. D., Wessel, P., Williams, S. E., & Seton, M. (2015). Long-term interaction between mid-ocean ridges and mantle plumes. Nature Geoscience, 8(6), 479-483.

Summary
Plate tectonic motions are commonly considered to be driven by slab pull at subduction zones and ridge push at mid-ocean ridges, with motion punctuated by plumes of hot material rising from the lower mantle. Within this model, the geometry and location of mid-ocean ridges are considered to be independent of lower-mantle dynamics, such as deeply sourced plumes that produce voluminous lava eruptions-termed large igneous provinces. Here we use a global plate model to reconstruct the locations of large igneous provinces relative to plumes and mid-ocean ridges at the time they formed. … Read more…

Share