A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow

Hassan, R., Müller, R.D., Gurnis, M., Williams, S.E. and Flament, N. (2016). A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 533, 239-242. doi:10.1038/nature17422 A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow

How the Hawaiian-Emperor seamount chain got its spectacular bend

In a paper published in Nature, Rakib Hassan with fellow EarthByters Dietmar Müller, Simon E. Williams & Nicolas Flament, and Caltech’s Michael Gurnis, proposed a solution to a long standing geological mystery – how the distinct bend in the Hawaiian-Emperor Seamount Chain came to be. Using NCI’s Raijin supercomputer, the research team simulated flow patterns in the Earth’s mantle over the past 100 million years. The convection model suggests that the history of subduction has a profound effect on the time-dependent deformation of the edges of the Large Low-Shear Velocity Province (LLSVP) under the Pacific. The Hawaiian plume originates from the edge of this province and the southward migration of the plume during the formation of the Emperor chain reflects the migration of the northern edge of the LLSVP before ~47 million years ago. 
Read more…

Earth's climate throughout the Phanerozoic

Eocene topo bath

Eocene topo bathProject Summary
EarthByte is involved in a series of projects aimed at understanding and modeling Earth’s climate throughout the Phanerozoic. Some of these projects include:

  • Future Fellowship of Maria Seton on “Oceanic gateways: a primary control on global climate change?”
  • Basin GENESIS Hub activities, related to the effect of the mantle, crustal deformation, erosion and sedimentary processes on sedimentary basins
  • ATOM – a coupled atmospheric-ocean circulation code jointly developed by Prof. Roger Grundmann and EarthByte.

EarthByte’s expertise in tectonics, geodynamics and surface process modeling is enhanced by close collaborations with leading palaeoclimate modellers and geochemical oceanographers.  … Read more…

Earth’s climate throughout the Phanerozoic

Eocene topo bath

Eocene topo bathProject Summary
EarthByte is involved in a series of projects aimed at understanding and modeling Earth’s climate throughout the Phanerozoic. Some of these projects include:

  • Future Fellowship of Maria Seton on “Oceanic gateways: a primary control on global climate change?”
  • Basin GENESIS Hub activities, related to the effect of the mantle, crustal deformation, erosion and sedimentary processes on sedimentary basins
  • ATOM – a coupled atmospheric-ocean circulation code jointly developed by Prof. Roger Grundmann and EarthByte.

EarthByte’s expertise in tectonics, geodynamics and surface process modeling is enhanced by close collaborations with leading palaeoclimate modellers and geochemical oceanographers.  … Read more…

Geochemisty, Geophysics, Geosystems – Provenance of plumes in mantle convection models

Hassan, R., Flament, N., Gurnis, M., Bower, D. J., & Müller, D. (2015). Provenance of plumes in global convection models. Geochemistry, Geophysics, Geosystems. doi: 10.1002/2015GC005751. Provenance of plumes in global convection models