East African topography and volcanism explained by a single, migrating plume

Abstract: Anomalous topographic swells and Cenozoic volcanism in east Africa have been associated with mantle plumes. Several models involving one or more fixed plumes beneath the northeastward migrating African plate have been suggested to explain the space-time distribution of magmatism in east Africa. We devise paleogeographically constrained global models of mantle convection and, based on … Read more…

The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian

Abstract: The CO2 liberated along subduction zones through intrusive/extrusive magmatic activity and the resulting active and diffuse outgassing influences global atmospheric CO2. However, when melts derived from subduction zones intersect buried carbonate platforms, decarbonation reactions may cause the contribution to atmospheric CO2 to be far greater than segments of the active margin that lacks buried carbon-rich rocks and … Read more…

EarthByte Models Mantle Plumes Through Space and Time

Deep Carbon Observatory member, Sabin Zahirovic explains why the Earth is like a giant, spherical lava lamp. The intense heat at the core drives plumes of mantle material up to the cooler surface where it solidifies as part of tectonic plates. Over geologic timescales, the edges of those plates eventually sink back into the mantle in … Read more…

Dynamic topography and eustasy controlled the paleogeographic evolution of northern Africa since the mid-Cretaceous

Author List: Nicholas Barnett-Moore, Rakib Hassan, Dietmar Müller, Simon Williams & Nicolas Flament. Citation: Barnett-Moore, Nicholas & Hassan, Rakib & Müller, Dietmar & Williams, Simon & Flament, Nicolas. (2017). Dynamic topography and eustasy controlled the paleogeographic evolution of northern Africa since the mid Cretaceous. Tectonics. . 10.1002/2016tc004280. Abstract: Northern Africa underwent widespread inundation during the Late Cretaceous. Changes … Read more…

The deep Earth origin of the Iceland plume and its effects on regional surface uplift and subsidence

Abstract The present-day seismic structure of the mantle under the North Atlantic Ocean indicates that the Iceland hotspot represents the surface expression of a deep mantle plume, which is thought to have erupted in the North Atlantic domain during the Palaeocene. The spatial and temporal evolution of the plume since its eruption is still highly … Read more…

Dynamic topography of passive continental margins and their hinterlands since the Cretaceous

Author List: Dietmar Müller, Rakib Hassan, Michael Garnis, Nicolas Flament, Simon Williams. Citation: Müller, Dietmar & Hassan, Rakib & Gurnis, M & Flament, Nicolas & Williams, Simon. (2018). Dynamic topography of passive continental margins and their hinterlands since the Cretaceous. Gondwana Research. . 10.1016/j.gr.2017.04.028. Abstract: Even though it is well accepted that the Earth’s surface topography has been … Read more…

A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow

Author List: Rakib Hassan, Dietmar Müller, Mike Gurnis, Simon Williams and Nicolas Flament Citation: Hassan, R., Müller, R.D., Gurnis, M., Williams, S.E. and Flament, N. (2016). A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 533, 239-242. doi:10.1038/nature17422 Abstract: Volcanic hotspot tracks featuring linear progressions in the age of volcanism … Read more…

How the Hawaiian-Emperor seamount chain got its spectacular bend

In a paper published in Nature, Rakib Hassan with fellow EarthByters Dietmar Müller, Simon E. Williams & Nicolas Flament, and Caltech’s Michael Gurnis, proposed a solution to a long standing geological mystery – how the distinct bend in the Hawaiian-Emperor Seamount Chain came to be. Using NCI’s Raijin supercomputer, the research team simulated flow patterns in the Earth’s mantle over the past 100 million years. The convection model suggests that the history of subduction has a profound effect on the time-dependent deformation of the edges of the Large Low-Shear Velocity Province (LLSVP) under the Pacific. The Hawaiian plume originates from the edge of this province and the southward migration of the plume during the formation of the Emperor chain reflects the migration of the northern edge of the LLSVP before ~47 million years ago. 
Read more…

Share

Earth’s climate throughout the Phanerozoic

Eocene topo bath

Eocene topo bathProject Summary
EarthByte is involved in a series of projects aimed at understanding and modeling Earth’s climate throughout the Phanerozoic. Some of these projects include:

  • Future Fellowship of Maria Seton on “Oceanic gateways: a primary control on global climate change?”
  • Basin GENESIS Hub activities, related to the effect of the mantle, crustal deformation, erosion and sedimentary processes on sedimentary basins
  • ATOM – a coupled atmospheric-ocean circulation code jointly developed by Prof. Roger Grundmann and EarthByte.

EarthByte’s expertise in tectonics, geodynamics and surface process modeling is enhanced by close collaborations with leading palaeoclimate modellers and geochemical oceanographers.  … Read more…

Share

Earth's climate throughout the Phanerozoic

Eocene topo bath

Eocene topo bathProject Summary
EarthByte is involved in a series of projects aimed at understanding and modeling Earth’s climate throughout the Phanerozoic. Some of these projects include:

  • Future Fellowship of Maria Seton on “Oceanic gateways: a primary control on global climate change?”
  • Basin GENESIS Hub activities, related to the effect of the mantle, crustal deformation, erosion and sedimentary processes on sedimentary basins
  • ATOM – a coupled atmospheric-ocean circulation code jointly developed by Prof. Roger Grundmann and EarthByte.

EarthByte’s expertise in tectonics, geodynamics and surface process modeling is enhanced by close collaborations with leading palaeoclimate modellers and geochemical oceanographers.  … Read more…

Share

Geochemisty, Geophysics, Geosystems – Provenance of plumes in mantle convection models

Hassan, R., Flament, N., Gurnis, M., Bower, D. J., & Müller, D. (2015). Provenance of plumes in global convection models. Geochemistry, Geophysics, Geosystems. doi: 10.1002/2015GC005751. Provenance of plumes in global convection models