Tectonic evolution of Western Tethys from Jurassic to present day: coupling geological and geophysical data with seismic tomography models

Author List: Maral Hosseinpour, Simon Williams, Maria Seton, Nicholas Barnett-Moore and Dietmar Müller Citation: Hosseinpour, M., Williams, S., Seton, M., Barnett-Moore, N., and Müller, R.D. (2016). Tectonic evolution of Western Tethys from Jurassic to present day: coupling geological and geophysical data with seismic tomography models. International Geology Review 58 (13): 1616–1645. doi:10.1080/00206814.2016.1183146 Abstract: The geodynamic evolution of the … Read more…

How the Hawaiian-Emperor seamount chain got its spectacular bend

In a paper published in Nature, Rakib Hassan with fellow EarthByters Dietmar Müller, Simon E. Williams & Nicolas Flament, and Caltech’s Michael Gurnis, proposed a solution to a long standing geological mystery – how the distinct bend in the Hawaiian-Emperor Seamount Chain came to be. Using NCI’s Raijin supercomputer, the research team simulated flow patterns in the Earth’s mantle over the past 100 million years. The convection model suggests that the history of subduction has a profound effect on the time-dependent deformation of the edges of the Large Low-Shear Velocity Province (LLSVP) under the Pacific. The Hawaiian plume originates from the edge of this province and the southward migration of the plume during the formation of the Emperor chain reflects the migration of the northern edge of the LLSVP before ~47 million years ago. 
Read more…

Share

Modelling CO2, subduction zone volcanism and carbonate platform interactions

During the Cretaceous to early Paleogene, atmospheric levels of carbon dioxide reached levels of 1 200 – 2 400 ppm. Concurrently, subduction zone lengths reached lengths of up to 52 000 km based on previous estimates, and were dominated by continental arcs. Continent-sourced carbonates too have a significant impact on CO2 flux from subduction volcanism. As continental arcs … Read more…

Workflow explained: The interaction of subduction zone volcanism with carbonate platforms and continents

Objectives Our two objectives of analysis were to (a) quantify the km-long length areas of interaction of subduction zone volcanism with carbonate platforms and (b) characterise the subduction volcanism as either continental or intra-oceanic depending on the proximity of the subduction zones to continent-ocean boundaries. In regards to the first objective, we are interested in cases where subduction-related … Read more…

Workflow explained: Measuring global subduction zone lengths with pyGPlates

For our first analysis, we developed a simple work flow to quantify subduction zone lengths from 0 to 400 Ma, using the Matthews et al. (2016) plate kinematic model. The bash workflow consists of python scripts, GMT tools and AWK scripts organised into bash sub-routine functions. The most integral parts of the workflow are the python scripts … Read more…

Bailey Payten awarded ASEG NSW Student Scholarship

Congratulations to Honours student Bailey Payten who has been awarded an Australian Society of Exploration Geophysicists (ASEG) NSW Student Scholarship! Bailey’s Honours project aims to investigate the rifting of the Lord Howe Rise from Gondwana using numerical modelling. As part of his project Bailey recently had the opportunity to participate in a survey of the deep structure of the Lord Howe … Read more…

Joanna Tobin awarded ASEG NSW Student Scholarship

Congratulations to Honours student Jo Tobin who has been awarded the Australian Society of Exploration Geophysicists (ASEG) NSW Student Scholarship! The aim of the scholarship is to promote and encourage geophysics related research and education. Jo’s Honours project focuses on the numerical simulation of the Papuan fold and thrust belt. The project involves the use of Underworld software, and looks at … Read more…

PALEOMAP PaleoAtlas for GPlates

PaleoAtlas_imageThe PALEOMAP PaleoAtlas for GPlates consists of 91 paleogeographic maps spanning the Phanerozoic and late Neoproterozoic. The PaleoAtlas can be directly loaded into GPlates as a Time Dependent Raster file. The paleogeographic maps in the PaleoAtlas illustrate the ancient configuration of the ocean basins and continents, as well as important topographic and bathymetric features such as mountains, lowlands, shallow sea, continental shelves, and deep oceans. This tutorial also describes how the maps in the PaleoAtlas were made, documents the sources of information used to make the paleogeographic maps, and provides instructions how to plot user-defined paleodata on the paleogeographic maps using the program PaleoDataPlotter. Read more…

Share

Geologists Discover How Australia’s Highest Mountain Formed

Eastern_australia_topographyCongratulations to Prof Dietmar Müller, Dr Nicolas Flament, Dr Kara Matthews, Dr Simon Williams, and Prof Michael Gurnis on their paper recently published in Earth and Planetary Science Letters. Their paper, Formation of Australian continental margin highlands driven by plate-mantle interaction, has featured in a variety of Australian and international media outlets.

Read more…

Share

Geologists Discover How Australia’s Highest Mountain Formed – Media Release

Eastern_australia_topographyGeologists from the University of Sydney and the California Institute of Technology have solved the mystery of how Australia’s highest mountain – Mount Kosciusko – and surrounding alps came to exist.

Most of the world’s mountain belts are the result of two continents colliding (including the Himalayas) or volcanism. The mountains of Australia’s Eastern highlands – stretching from north-eastern Queensland to western Victoria – are an exception. Until now no one knew how they formed.

Read more…

Share

Computers & Geosciences – Badlands: An open-source, flexible and parallel framework to study landscape dynamics

Author List: Tristan Salles, Luke Hardiman Citation: Salles, T., and Hardiman, L. (2016). Badlands: An open-source, flexible and parallel framework to study landscape dynamics. Computers & Geosciences 91 77–89. DOI: 10.1016/j.cageo.2016.03.011 Abstract: In this paper, we propose a minimal numerical model which governing equations describe the following processes: erosion, sedimentation, diffusion and flexure. The model respects conservation … Read more…

Computers & Geosciences – Badlands: An open-source, flexible and parallel framework to study landscape dynamics

Salles, T., and Hardiman, L. (2016). Badlands: An open-source, flexible and parallel framework to study landscape dynamics. Computers & Geosciences 91 77–89. DOI: 10.1016/j.cageo.2016.03.011 Badlands: An open-source, flexible and parallel framework to study landscape dynamics

PLOS ONE – The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser

Author List: Dietmar Müller, Xiaodong Qin, David Sandwell, Adriana Dutkiewicz, Simon Williams, Nicolas Flament, Stefan Maus, Maria Seton Citation: Müller, R. D., Qin, X., Sandwell, D. T., Dutkiewicz, A., Williams, S. E., Flament, N., Maus, S., & Seton, M. (2016). The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser. … Read more…

Earth and Planetary Science Letters – Formation of Australian continental margin highlands driven by plate–mantle interaction

Author List: Dietmar Müller, Nicolas Flament, Kara Matthews, Simon Williams and Mike Gurnis Citation: Müller, R. D., Flament, N., Matthews, K. J., Williams, S. E., & Gurnis, M. (2016). Formation of Australian continental margin highlands driven by plate–mantle interaction. Earth and Planetary Science Letters, 441, 60–70. http://dx.doi.org/10.1016/j.epsl.2016.02.025 Formation of Australian continental margin highlands driven by plate–mantle … Read more…

Geophysical Research Letters – Alignment between seafloor spreading directions and absolute plate motions through time

Author List: Simon Williams, Nicolas Flament and Dietmar Müller Citation: Williams, S., Flament, N., & Müller, R. D. (2016). Alignment between seafloor spreading directions and absolute plate motions through time. Geophysical Research Letters, 43, 1472–1480, doi:10.1002/2015GL067155. Alignment between seafloor spreading directions and absolute plate motions through time

Earth-Science Reviews – The Late Cretaceous to recent tectonic history of the Pacific Ocean basin

Wright, N. M., Seton, M., Williams, S. E., & Müller, R. D. (2016). The Late Cretaceous to recent tectonic history of the Pacific Ocean basin. Earth-Science Reviews, 154, 138–173. http://dx.doi.org/10.1016/j.earscirev.2015.11.015 The Late Cretaceous to recent tectonic history of the Pacific Ocean basin 

Earth and Planetary Science Letters – Assessing the role of slab rheology in coupled plate-mantle convection models

Bello, L., Coltice, N., Tackley, P. J., Müller, R. D., & Cannon, J. (2015). Assessing the role of slab rheology in coupled plate-mantle convection models. Earth and Planetary Science Letters, 430, 191–201. http://dx.doi.org/10.1016/j.epsl.2015.08.010 Assessing the role of slab rheology in coupled plate-mantle convection models

Tectonophysics – Full-fit reconstruction of the South China Sea conjugate margins

Bai, Y., Wu, S., Liu, Z., Müller, R. D., Williams, S. E., Zahirovic, S., & Dong, D. (2015). Full-fit reconstruction of the South China Sea conjugate margins. Tectonophysics, 661, 121–135. http://dx.doi.org/10.1016/j.tecto.2015.08.028 Full-fit reconstruction of the South China Sea conjugate margins

Geophysical Research Letters – Mantle-induced subsidence and compression in SE Asia since the early Miocene

Author List: Ting Yang, Mike Gurnis, Sabin Zahirovic Citation: Yang, T., M. Gurnis, and S. Zahirovic (2016), Mantle–induced subsidence and compression in SE Asia since the early Miocene, Geophysical Research Letters, doi: 10.1002/2016GL068050.  Mantle-induced subsidence and compression in SE Asia since the early Miocene

GPlates Portal International Media Coverage

gravity_grid_180my_agoThe recent article on the GPlates Portal published in PLOS ONE by Prof Dietmar Müller, Xiaodong Qin, Prof David Sandwell, Dr Adriana Dutkiewicz, Dr Simon Williams, Dr Nicolas Flament, Dr Stefan Maus, and Dr Maria Seton, has received significant international media attention over the past week, featuring in articles from Australia, UK, US, India, and UAE!

See the list of online media below, and check out the interactive globes yourself!

Read more…

Share

Virtual Time Machine Of Earth’s Geology Now In The Cloud

gravity_grid_180my_agoHow did Madagascar once slot next to India? Where was Australia a billion years ago?

Cloud-based virtual globes developed by a team led by University of Sydney geologists mean anyone with a smartphone, laptop or computer can now visualise, with unprecedented speed and ease of use, how the Earth evolved geologically. 

Reported today in PLOS ONE, the globes have been gradually made available since September 2014. Some show Earth as it is today while others allow reconstructions through ‘geological time’, harking back to the planet’s origins.  

Uniquely, the portal allows an interactive exploration of supercontinents. It shows the breakup and dispersal of Pangea over the last 200 million years. It also offers a visualisation of the supercontinent Rodinia, which existed 1.1 billion years ago. Rodinia gradually fragmented, with some continents colliding again more than 500 million years later to form Gondwanaland.   

Read more…

Share

Creating an evolving model of carbonate platform development and accumulation

What do crustal carbonates have to do with CO2 emissions? The proliferation of reefs and carbonate platforms in shallow-water environments contribute to accumulation of organic-C-rich carbonate rocks along the edge of continents. These platforms are a persistent phenomenon throughout the Phanerozoic and strongly suggests that large volumes of carbonates are buried in the upper crust within the … Read more…

Postgraduate Scholarship in Geodynamics/Plate Tectonics/Morphodynamics

Funding Body The University of Sydney Title Postgraduate Scholarship in Geodynamics/Plate Tectonics/Morphodynamics Research Areas Sciences & Engineering Type Postgraduate Research Description Applications are invited for a PhD scholarship in Plate Tectonics/ Geodynamics/ Morphodynamics working with members of the Basin Genesis Hub (an ARC Industrial Transformation Research Hub) within the EarthByte Group at the School of … Read more…

GPlates in Spanish news

The link below points to an article written about EarthByte and GPlates by a Spanish journalist. The article is titled: “Viaje en una máquina del tiempo virtual a la Tierra de hace 1.000 millones de años: … which translates into: Travel in a virtual time machine to Earth 1,000 million years ago. http://m.eldiario.es/hojaderouter/ciencia/gplates-pangea-geologia-historia-Tierra-big_data_0_482951817.html Buenos dias todos … Read more…

Mike Tetley wins International Geological Congress Travel Grant

Mike Tetley in black and white

Congratulations to PhD candidate Mike Tetley who was awarded a 34th International Geological Congress Travel Grant Scheme for Early-Career Australian and New Zealand Geoscientists. The funds will go towards his current 12-month research visit to Caltech where he is working with Prof Mike Gurnis, a world leader in Earth Dynamics, to study the evolution of … Read more…

pygplates beta revision 12 released

GPlates Vector Logo

GPlates Vector LogoThe first beta release of pygplates (the GPlates Python library) is now available for download.

pygplates enables access to GPlates functionality via the Python programming language. This may be of particular use to researchers requiring more flexibility than is provided by the GPlates user interface.

The following pygplates functionality is available:-

  • Load and save feature data (GPML, Shapefile, etc)
  • Create/modify/query feature data
  • Traverse/modify/query plate rotation hierarchy
  • Partition into plates and assign plate properties
  • Reconstruct geometries, flowlines, motion paths
  • Resolve topological plates and query their boundary sections (ridges/subductions)
  • Calculate velocities
  • Distance between geometries (region-of-interest queries)
  • Geometry queries (length, point-in-polygon, area, centroid, tessellate, interpolate, join, partition)

Read more…

Share

EarthByte welomes Sebastiano 'Sam' Doss

Sam Doss

EarthByte welcomes new Research Assistant Sebastiano ‘Sam’ Doss to the group. Sebastiano is currently working on the Deep Carbon Observatory project, investigating the interaction of subduction zones with carbonate platforms over time in connection to CO2 flux in the atmosphere.

EarthByte welomes Sebastiano ‘Sam’ Doss

Sam Doss

EarthByte welcomes new Research Assistant Sebastiano ‘Sam’ Doss to the group. Sebastiano is currently working on the Deep Carbon Observatory project, investigating the interaction of subduction zones with carbonate platforms over time in connection to CO2 flux in the atmosphere.