AuScope reviews innovations of the ARC Basin Genesis HUB

Sedimentary basins around the world are critical to sustaining modern life on Earth. These basins can be thought of as containers that hold water, minerals, energy, and can potentially be used to store carbon dioxide. Unpacking how they form, and where those resources and storage opportunities may lie is a sizeable feat for the best … Read more…

GPlates-in-schools!

Maria Seton attended Marist College North Shore (Sydney) earlier this week and gave a presentation on “computerised simulations and models of the Earth’s geological history” to a keen group of senior science students. Part of this presentation involved leading a hands-on GPlates activity with the students (see photo). It was a hit and seeing plate … Read more…

Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous

Citation: Dutkiewicz, Adriana & Müller, Dietmar & Cannon, John & Vaughan, Sioned & Zahirovic, Sabin. (2018). Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous. Geology. 10.1130/G45424.1. Abstract Deep-sea carbonate represents Earth’s largest carbon sink and one of the least-known components of the long-term carbon cycle that is intimately linked … Read more…

Interactive virtual gravity globe, based on BGI’s global gravity grids by Bonvalot et al. (2012)

Ready for a fresh start in 2019, our web development guru Michael Chin has created a new interactive virtual gravity globe, based on BGI’s global gravity grids by Bonvalot et al. (2012). The virtual globe allows the user to visualise either Bouguer or isostatic gravity anomalies. The latter has both the effect of surface and … Read more…

Two New Sloan Foundation Grants for Deep Carbon Science

The Alfred P. Sloan Foundation recently announced two new Officer’s Grants for deep carbon science, supporting important community building and modeling efforts. These new projects will invigorate a community of scientists committed to understanding the evolution of deep carbon through deep time through 2019 and beyond. “Carbon Down Under: Galvanizing Australia’s research community for the … Read more…

New interactive rift obliquity globe on the GPlates Portal

The ARC Basin Genesis Hub has made a new interactive rift obliquity globe available on the GPlates Portal at http://portal.gplates.org/cesium/?view=rift_ov, based on a recently published paper entitled “Oblique rifting: the rule, not the exception” in Solid Earth. This virtual globe visualizes extension velocities and obliquities within Earth’s major post-Pangea rift systems. Each circle depicts the … Read more…

PaleoDEM Resource – Scotese and Wright (2018)

A paleo-digital elevation model (paleoDEM) is a digital representation of paleotopography and paleobathymetry that has been “reconstructed” back in time. This report describes how the 117 PALEOMAP paleoDEMS (see Supplementary Materials) were made and how they can be used to produce detailed paleogeographic maps. The paleoDEMS describe the changing distribution of deep oceans, shallow seas, … Read more…

GPlates 2.1 released (and pyGPlates revision 18)

GPlates Title Logo

GPlates 2.1 was released today! Many bugs have been fixed, including the computation of crustal thinning factors. NetCDF-4 is now supported for raster import/export, i.e. GPlates 2.1 can now read and write GMT-5 grids. Many thanks to the GPlates development team and especially to Sabin Zahirovic without whose tireless efforts GPlates 2.1 would not have … Read more…

Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic

Sabin Zahirovic, Kara J. Matthews, Nicolas Flament, R. Dietmar Müller, Kevin C. Hill, Maria Seton, Michael Gurnis Earth-Science Reviews Citation: Zahirovic, S., Matthews, K.J., Flament, N., Müller, R.D., Hill, K.C., Seton, M. and Gurnis, M., 2016, Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic, Earth Science Reviews, 162, 293-337. The … Read more…

GPlates: Building a Virtual Earth Through Deep Time

A paper about the GPlates software has been published in G-cubed. The GPlates virtual globe software provides the capability to reconstruct geodata attached to tectonic plates to develop and modify models that describe how the plates and their boundaries have evolved through time. It allows users to deform plates and to visualize surface tectonics in … Read more…

The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian

Abstract: The CO2 liberated along subduction zones through intrusive/extrusive magmatic activity and the resulting active and diffuse outgassing influences global atmospheric CO2. However, when melts derived from subduction zones intersect buried carbonate platforms, decarbonation reactions may cause the contribution to atmospheric CO2 to be far greater than segments of the active margin that lacks buried carbon-rich rocks and … Read more…

GPlates 2.1 software and data sets

GPlates Title Logo

GPlates 1.5 PromoGPlates is a free desktop software for the interactive visualisation of plate-tectonics. The compilation and documentation of GPlates 2.1 data was primarily funded by AuScope National Collaborative Research Infrastructure (NCRIS).

GPlates is developed by an international team of scientists and professional software developers at the EarthByte Project (part of AuScope) at the University of Sydney, the Division of Geological and Planetary Sciences (GPS) at CalTech, the Geodynamics team at the Geological Survey of Norway (NGU) and the Centre for Earth Evolution and Dynamics (CEED) at the University of Oslo. … Read more…

Share

The Interplay Between the Eruption and Weathering of Large Igneous Provinces and the Deep-Time Carbon Cycle

Abstract: Although many sources of atmospheric CO2 have been estimated, the major sinks are poorly understood in a deep-time context. Here we combine plate reconstructions, the eruption ages and outlines of Large Igneous Provinces (LIPs), and the atmospheric CO2 proxy record to investigate how their eruptions and weathering within the equatorial humid zone impacted global … Read more…

PyBacktrack 1.0: a tool for reconstructing paleobathymetry on oceanic and continental crust

The pyBacktrack software package allows the backtracking of the paleo-water depth of ocean drill sites, providing a framework for reconstructing the accumulation history of sediment components through time. The software incorporates the effects of decompaction of common marine lithologies and allows backtracking of sites on both oceanic and continental crust.  Backtracking on ocean crust is based on … Read more…

Workshop on “Bayeslands: Bayesian inference for Badlands”

Overview: In recent years, the Bayesian inference has become a popular methodology for the estimation and uncertainty quantification of parameters in geological and geophysical forward models via the posterior distribution. Badlands is a basin and landscape evolution model for simulating topography development at various space and time scales. This workshop will present  BayesLands which provides … Read more…

pyBadlands: A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time

Abstract Understanding Earth surface responses in terms of sediment dynamics to climatic variability and tectonics forcing is hindered by limited ability of current models to simulate long-term evolution of sediment transfer and associated morphological changes. This paper presents pyBadlands, an open-source python-based framework which computes over geological time (1) sediment transport from landmasses to coasts, … Read more…

Oceanic crustal carbon cycle drives 26 million-year atmospheric carbon dioxide periodicities

Citation: Müller, R.D. and Dutkiewicz, A., 2018, Oceanic crustal carbon cycle drives 26 million-year atmospheric carbon dioxide periodicities, Science Advances, 4:eaaq0500, 1-7. Atmospheric carbon dioxide (CO2) data for the last 420 million years (My) show long-term fluctuations related to supercontinent cycles as well as shorter cycles at 26–32 My whose origin is unknown. Periodicities of 26–30 … Read more…

Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma

Citation: Dutkiewicz, A., Müller, R.D., Wang, X., O’Callaghan, S., Cannon, J., Wright, N.M., 2017. Predicting sediment thickness on vanished ocean crust since 200 Ma. Geochemistry, Geophysics, Geosystems, 18, 4586–4603. Tracing sedimentation through time on existing and vanished seafloor is imperative for constraining long-term eustasy and for calculating volumes of subducted deep-sea sediments that contribute to global … Read more…

Improving global paleogeography since the late Paleozoic using paleobiology

Author List: Wenchao Cao, Sabin Zahirovic, Nicolas Flament, Simon Williams, Jan Golonka, Dietmar Müller Citation: Cao, W., Zahirovic, S., Flament, N., Williams, S., Golonka, J., and Müller, R. D., 2017, Improving global paleogeography since the late Paleozoic using paleobiology: Biogeosciences, v. 14, no. 23, p. 5425-5439. Paleogeographic maps, linked to plate tectonic reconstructions, are key components required for climate models … Read more…

Kinematic constraints on the Rodinia to Gondwana transition

Author List: Andrew Merdith, Simon Williams, Dietmar Müller & Alan Collins. Citation: Merdith, Andrew & Williams, Simon & Müller, Dietmar & Collins, Alan. (2017). Kinematic constraints on the Rodinia-Gondwana transition. Precambrian Research. 299. . 10.1016/j.precamres.2017.07.013. Abstract: Earth’s plate tectonic history during the breakup of the supercontinent Pangea is well constrained from the seafloor spreading record, but evolving plate configurations during … Read more…

Global Dynamic Topography Models

Cao et al., 2018

Cao, X., Flament, N, Müller, R.D. and Li, S., 2018, The dynamic topography of eastern China since the latest Jurassic Period , Tectonics.

Müller et al., 2017

Müller R.D., Hassan, R., Gurnis, M., Flament, N., and Williams, S.E., 2017, Dynamic topography of passive continental margins and their hinterlands since the Cretaceous, Gondwana Research, in press, accepted 21 March 2017.

Barnett-Moore et al., 2017

Barnett-Moore, N., R. Hassan, R. D. Müller, S. E. Williams, and N. Flament (2017), Dynamic topography and eustasy controlled the paleogeographic evolution of northern Africa since the mid-Cretaceous , Tectonics, 36, 929–944, doi:10.1002/2016TC004280.

 Rubey et al., 2017

Rubey, M., Brune, S., Heine, C., Davies, D. R., Williams, S. E., and Müller R. D.: Global patterns of Earth’s dynamic topography since the Jurassic, Solid Earth Discuss., doi:10.5194/se-2017-26, in press, 2017.

Müller et al., 2016

Müller, R. D., Flament, N., Matthews, K. J., Williams, S. E., & Gurnis, M. (2016). Formation of Australian continental margin highlands driven by plate-mantle interaction.. Earth and Planetary Science Letters, 441, 60-70. http://dx.doi.org/10.1016/j.epsl.2016.02.025

Zahirovic et al., 2016a

Zahirovic, S., Matthews, K. J., Flament, N., Müller, R. D., Hill, K. C., Seton, M., & Gurnis, M. (2016a). Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Science Reviews, 162, 293-337.

Zahirovic et al.,2016b

Zahirovic, S., Flament, N., Müller, R. D, Seton, M., & Gurnis, M. (2016b). Large fluctuations of shallow seas in low-lying Southeast Asia driven by mantle flow. Geochemistry, Geophysics, Geosystems, 17(9), 3589-3607.

Flament et al., 2015

Flament, N., Gurnis, M., Müller R. D., Bower, D. J., & Husson, L. (2015). Influence of subduction history on South American topography. Earth and Planetary Science Letters, 430, 9-18, http://dx.doi.org/10.1016/j.epsl.2015.08.006.

Seton et al., 2015

Seton, M., Flament, N., Whittaker, J., Müller, R. D., Gurnis, M., & Bower, D. J. (2015). Ridge subduction sparked reorganization of the Pacific plate-mantle system 60.50 million years ago. Geophysical Research Letters, 42(6), 1732-1740.

Bower et al., 2015

Bower, D. J., Gurnis, M., & Flament, N. (2015). Assimilating lithosphere and slab history in 4-D Earth models. Physics of the Earth and Planetary Interiors, 238, 8-22.

Flament et al., 2014

Read more…

Share

Tectonic speed limits from plate kinematic reconstructions

Abstract The motion of plates and continents on the planet’s surface are a manifestation of long-term mantle convection and plate tectonics. Present-day plate velocities provide a snapshot of this ongoing process, and have been used to infer controlling factors on the speeds of plates and continents. However, present-day velocities do not capture plate behaviour over … Read more…

The deep Earth origin of the Iceland plume and its effects on regional surface uplift and subsidence

Abstract The present-day seismic structure of the mantle under the North Atlantic Ocean indicates that the Iceland hotspot represents the surface expression of a deep mantle plume, which is thought to have erupted in the North Atlantic domain during the Palaeocene. The spatial and temporal evolution of the plume since its eruption is still highly … Read more…

Dynamic topography of passive continental margins and their hinterlands since the Cretaceous

Author List: Dietmar Müller, Rakib Hassan, Michael Garnis, Nicolas Flament, Simon Williams. Citation: Müller, Dietmar & Hassan, Rakib & Gurnis, M & Flament, Nicolas & Williams, Simon. (2018). Dynamic topography of passive continental margins and their hinterlands since the Cretaceous. Gondwana Research. . 10.1016/j.gr.2017.04.028. Abstract: Even though it is well accepted that the Earth’s surface topography has been … Read more…

A full-plate global reconstruction of the Neoproterozoic

Author List:  Andrew Merdith, Alan Collins, Simon Williams, Sergei Pisarevsky, John Foden, Donnelly Archibald, Morgan Blades, Brandon Alessio, Sheree Armistead, Diana Plavsa, Chris Clark, Dietmar Müller Citation: Merdith, Andrew & Collins, Alan & Williams, Simon & Pisarevsky, Sergei & Foden, John & Archibald, Donnelly & Blades, Morgan & Alessio, Brandon & Armistead, Sheree & Plavsa, Diana & Clark, Chris … Read more…

A Paleomagnetic Database for GPlates: PaleoPoles, Declination Arrows, and PaleoLatitudes

A PaleomagneticPmag Tutorial Image Database that has been assembled for use with the program, GPlates.  The paleomagnetic database presented here is made up of 1638 paleopoles compiled by Rob Van der Voo for his book, Paleomagnetism of the Atlantic, Tethys, and Iapetus Oceans.  In addition to the spreadsheet of paleopoles, we have constructed five feature collections that can be used to visualize the paleomagnetic data using GPlates:  1) site localities, 2) paleopoles, 3) declination arrows, 4) paleolatitude labels, and a set of time-dependent rasters which plot the site locations, paleopoles, declination arrows, and paleolatitude labels on a set of plate tectonic reconstructions ( 0 – 540 Ma).  The last section of this report is a detailed discussion of the paleomagnetic data for three-time intervals (40Ma, 285Ma, and 450Ma).  The Supplementary Materials includes a program, “PaleoPolePlotter”, which GPlates users can use to build paleopoles, declination arrows, and paleolatitude labels from user-defined data sets
Read more…

Share

Badlands v2.0 is released

Today version 2.0 of Badlands has been released This release add new capabilities to the code: simulates river entering in the simulation area output of Chi parameter in Hdf5 flow network multi-erodibility layers creation 3D stratigraphic layer displacements This release is compatible with version 1.0.0 and will work with similar XML input files. Download Badlands (source … Read more…

Origin and evolution of the deep thermochemical structure beneath Eurasia

Flament_Figure5Citation

Flament, N. et al. Origin and evolution of the deep thermochemical structure beneath Eurasia. Nat. Commun. 7, 14164 doi: 10.1038/ncomms14164 (2016).

Abstract 

A unique structure in the Earth’s lowermost mantle, the Perm Anomaly, was recently identified beneath Eurasia. It seismologically resembles the large low-shear velocity provinces (LLSVPs) under Africa and the Pacific, but is much smaller. This challenges the current understanding of the evolution of the plate–mantle system in which plumes rise from the edges of the two LLSVPs, spatially fixed in time. New models of mantle flow over the last 230 million years reproduce the present-day structure of the lower mantle, and show a Perm-like anomaly. The anomaly formed in isolation within a closed subduction network ~22,000 km in circumference before 150 million years ago before migrating ~1,500 km westward at an average rate of 1 cm per year, indicating a greater mobility of deep mantle structures than previously recognized. We hypothesize that the mobile Perm Anomaly could be linked to the Emeishan volcanics, in contrast to the previously proposed Siberian Traps. 

This article is freely accessible using the following link http://rdcu.be/oDqg Read more…

Share

GPlates 2.0 Released

2016_11_MedMeet-Group.jpgGPlates 2.0 was released last week, with lots of new features including plate deformation, volume rendering, much improved project and session management, a plate topology building tool and an interactive tool to determine best-fit rotation poles using the method of Hellinger, and much more. Check out the full list of improvements here. … Read more…

Share

Global plate boundary evolution and kinematics since the late Paleozoic

Matthews++_SummaryFigCitation

Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., and Müller, R.D. (2016). Global plate boundary evolution and kinematics since the late Paleozoic, Global and Planetary Change, 146, 226-250. DOI: 10.1016/j.gloplacha.2016.10.002

Abstract

Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410–250 Ma) and Mesozoic-Cenozoic (230–0 Ma). We ensure continuity during the 250–230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410–0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement.

This model is available with a default mantle reference frame, a hybrid reference frame using moving hotspots and a true polar wander corrected paleomagnetic reference frame (see paper for details) as well as with a paleomagnetic reference frame. For times before 83 Ma, the Pacific is shifted to maintain relative motions with the circum-Pangea continents – largely due to the fact that no paleomagnetic reference frames exist that extend to the birth age of the Pacific Plate. The paleomagnetic reference frame is based on data from Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J., Domeier, M., Gaina, C., and Tohver, E., 2012, Phanerozoic polar wander, palaeogeography and dynamics: Earth-Science Reviews, v. 114, no. 3, p. 325-368, DOI: 10.1016/j.earscirev.2012.06.007.

Read more…

Share