Big data reveals geology of world’s ocean floor

Lithology globe Aus Ant view

Lithology globe Aus Ant viewA team led by the University of Sydney School of Geosciences has created the first digital globe of seafloor sediments.

Ocean sediments cover 70% of our planet’s surface, forming the substrate for the largest ecosystem on Earth and its largest carbon reservoir – but the most recent map of seafloor geology was drawn by hand over 40 years ago, at the dawn of modern ocean exploration.

That’s about to change. In a gargantuan effort Adriana Dutkiewicz and her colleagues carefully analysed and categorised 15,000 seafloor sediment samples to reveal the nature of sedimentary blankets over ocean ridges, seamounts and the vast abyssal plains. She teamed up with big data experts to find the best way to use modern computer algorithms to turn the vast sea of point observations into a continuous digital map.  … Read more…

Share

Big Data Knowledge Discovery

Big Data Knowledge Discovery is an interdisciplinary research initiative that focuses on the scientific challenges and opportunities presented by the use of the new techniques of data science applied in the natural sciences. This research initiative brings together world class discipline leaders in the data-intensive sciences of Geo Sciences, Life Sciences and Physical Sciences with … Read more…

Gondwana Research – Origin of silica and fingerprinting of Australian sedimentary opals

Dutkiewicz, A., Landgrebe, T. C., & Rey, P. F. (2015). Origin of silica and fingerprinting of Australian sedimentary opals. Gondwana Research, 27(2), 786-795. doi: 10.1016/j.gr.2013.10.013. Origin of silica and fingerprinting of Australian sedimentary opals

Seawater chemistry driven by supercontinent assembly, breakup and dispersal, Müller et al. (2013)

Muller etal Fig1 - Seawater Chemistry Driven by Supercontinental AssemblyCitation
Müller, R. D., Dutkiewicz, A., Seton, M. and Gaina, C. (2013). Seawater chemistry driven by supercontinent assembly, break-up and dispersal Geology. doi 10.1130/G34405.1.

Summary
Global oceans are known to have alternated between aragonite and calcite seas. These oscillations reflect changes in the Mg/Ca ratio of seawater, which control biomineralisation and the composition of marine carbonates and are thought to be caused by the time dependence of crustal accretion at mid-ocean ridge crests and associated high temperature mid-ocean ridge brine flux. Here we use global ocean basin reconstructions to demonstrate that these fluctuations are instead caused by the gradual growth and destruction of mid-ocean ridges and their relatively cool flanks during long-term tectonic cycles thus linking ocean chemistry to off-ridge low temperature hydrothermal flux. Early Jurassic aragonite seas were a consequence of supercontinent stability and minima in mid-ocean ridge length and basalt alteration. The break-up of Pangaea led to a gradual doubling in ridge length and a 50% increase in hydrothermal flux mainly through an enormous increase in ridge flank area, leading to enhanced alteration of basalt, lowered seawater Mg/Ca ratios and marine hypercalcification from 140 to 35 Ma. … Read more…

Share

Opal exploration research recognised as outstanding highlight

Recent EarthByte research on opal exploration was recognised as an outstanding highlight and reflects the work of many of the group including, Andrew Merdith, Tom Landgrebe, Adriana Dutkiewicz and Patrice Rey. Congratulations to all of the contributors to the project and specifically to John Cannon and Michael Chin, the GPlates developers!

Geology – Seawater chemistry driven by supercontinent assembly, breakup, and dispersal

Müller, R. D., Dutkiewicz, A., Seton, M., & Gaina, C. (2013). Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology, 41(8), 907-910. doi: 10.1130/G34405.1. Seawater chemistry driven by supercontinent assembly, breakup, and dispersal

Australian Journal of Earth Sciences – Towards a predictive model for opal exploration using a spatio-temporal data mining approach

Merdith, A. S., Landgrebe, T. C., Dutkiewicz, A., & Müller, R. D. (2013). Towards a predictive model for opal exploration using a spatio-temporal data mining approach. Australian Journal of Earth Sciences, 60(2), 217-229. http://dx.doi.org/10.1080/08120099.2012.754793. Towards a predictive model for opal exploration using a spatio-temporal data mining approach Supplementary data 

From data mining to opal mining

Opal NobbyDocuments
AJES Paper
CG Paper

Opal is Australia’s national gemstone, however most significant opal discoveries were made in the early 1900’s – more than 100 years ago – until recently. Currently there is no formal exploration model for opal, meaning there are no widely accepted concepts or methodologies available to suggest where new opal fields may be found. … Read more…

Share

Computers & Geoscience – Relationships between palaeogeography and opal occurrence in Australia: a data-mining approach

Landgrebe, T. C. W., Merdith, A., Dutkiewicz, A., & Müller, R. D. (2013). Relationships between palaeogeography and opal occurrence in Australia: A data-mining approach. Computers & Geosciences, 56, 76-82. http://dx.doi.org/10.1016/j.cageo.2013.02.002. Download the paper – pdf

Computers & Geoscience – Relationships between palaeogeography and opal occurrence in Australia: a data-mining approach

Landgrebe, T. C. W., Merdith, A., Dutkiewicz, A., & Müller, R. D. (2013). Relationships between palaeogeography and opal occurrence in Australia: A data-mining approach. Computers & Geosciences, 56, 76-82. http://dx.doi.org/10.1016/j.cageo.2013.02.002. Download the paper – pdf

EarthByte to attend AGU 2011

EarthByte group members Dietmar Müller, Adriana Dutkiewicz, Nicolas Flament, Leonardo Quevedo, Maria Seton, Simon Williams, Nathaniel Butterworth, Kayla Maloney and Kara Matthews are attending the AGU Fall Meeting 2011 in San Francisco, USA from 5-9 December, 2011. Click here for more details about the AGU Fall Meeting